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Abstract 

 
Fiber-To-The-Home (FTTH) networks are on the cusp of bringing significantly higher capacities 
to residential users compared to today's commercial broadband options. While fiber is available 
to some consumers now, the capacities offered represent an incremental bump over more 
traditional DSL and cable options. However, a number of high capacity experimental FTTH 
networks have recently become operational. One of these is the Case Connection Zone (CCZ) 
which connects a neighborhood adjacent to Case Western Reserve University with bi-
directional 1 Gbps paths to each house. In this paper we present myriad observations from 
monitoring CCZ traffic for the past 14 months. We aim to better understand how users employ 
these high capacity links, how much of the capacity they utilize and conduct an initial 
exploration of why performance is limited to less than the raw capacity of the fiber. 



1. INTRODUCTION
Fiber-To-The-Home (FTTH) networks are on the cusp

of bringing significantly higher capacities to residen-
tial users compared to traditional commercial broad-
band offerings. Commercial ISPs have been offering
on the order of ten megabits/second fiber service for
several years (e.g., Verizon’s FiOS, AT&T’s Uverse).
However, several research projects have started to con-
nect residential users with significantly more capacity:
Google will connect 850 homes near Stanford univer-
sity [1] and 50K–500K more homes in Kansas City [11],
Chatanooga’s power utility has connected 100K homes
via fiber and started to offer network services [3] and
Case Western Reserve University has an operational
testbed of roughly 90 homes near campus connected via
fiber [2]. Finally, the United States’ “National Broad-
band Plan” calls for 100 million residential connections
to have at least 100 Mbps downlink and 50 Mbps up-
link networks—or 1–2 orders of magnitude more than
current commodity networks—by 2020 [19].
As we have thought about these networks of the (near)

future, we find ourselves coming back to two basic ques-
tions:

• What will users do with significantly higher capac-
ity? Traditionally, residential network capacity
has lagged behind content. In other words con-
tent providers have been producing ever increas-
ing quality of content (e.g., HD and 3D video) in
advance of commodity residential networks ability
to transmit the content. The envisioned FTTH
networks effectively leap-frog our current content
and hence a natural question is whether and how
users will leverage the increased capacity.

• Are our protocols up to the task of utilizing sig-
nificantly higher bandwidth in edge networks? In
other words, do the processes we impose in our
general protocols (e.g., TCP, HTTP) impose a bound
on performance that makes it difficult to use sig-
nificantly higher capacity?

In this paper we tackle both of these big picture ques-
tions in the context of monitoring Case Western Reserve
University’s Case Connection Zone (CCZ). This unique
university experiment connects each of roughly 90 res-
idences adjacent to campus via a bi-directional 1 Gbps
fiber link. After discussing the CCZ network, our data
collection and the calibration of our data in the next
section we then address these questions from a number
of angles in the remaining sections in the paper.
We stress that this paper is an initial study. With-

out fail, each analysis we present begs additional and
deeper questions that are not addressed in this paper.
Our goal in this paper is to gain an initial empirical un-
derstanding of the workings of a high capacity FTTH
network in the wild. This study is (as far as we know)

the first word on the topic and by no means anywhere
near the last word.

2. DATA
We use a packet-level monitor to record the traffic at

the border between hosts on the CCZ and the broader
Internet. The CCZ user population is roughly 60% stu-
dents and 40% full-time residents of the neighborhood
[10]. Each of the CCZ homes is connected via a 1 Gbps
fiber. These fibers ultimately come together in a switch
which is served by a 1 Gbps link to the broader net-
work. Traffic is mirrored to a switch port where our
monitor can observe and record the traffic. This switch
can represent a choke point given the 100x mismatch
between the aggregate capacity to the residences and
the capacity to the Internet. However, we never observe
aggregate usage of anywhere near 1 Gbps. As detailed
in § 5 we generally find daily average utilization to be
around 10 Mbps. Our data collection period for this
paper ranges from January 25, 2011 through March 31,
2012. We collect two general kinds of data as detailed
in the next two subsections.
We stress that we are not claiming our data is in

some way “representative” or “typical”. We present
our analysis as an initial look at a single FTTH edge
network. While no single vantage point will give a con-
clusive picture we believe this study provides an initial
look at these emerging networks. Indeed we encourage
the community to replicate our analyses in additional
FTTH environments such that we can gain a better
overall sense of the area. Additionally, we note that
this study also provides additional data about residen-
tial networks, as others have studied, e.g., [13].

2.1 Protocol Behavior Logs
First, we use Bro 1.5.2 [17] to continuously monitor

the CCZ network and record various traffic logs using its
collection of protocol analyzers. We denote this dataset
Lx where x identifies the particular protocol log. In
particular, we record the following logs that we use in
our study:
Connection Logs: Lc includes information about each
transport-layer connection1. For each connection these
logs include the start time, involved IP addresses and
port numbers, number of bytes transmitted in each di-
rection, duration of the connection and ancillary infor-
mation (e.g., whether TCP’s three-way handshake was
successfully completed).
HTTP Logs: Lh includes records for each HTTP [9]
transaction. These records include the IP addresses and
port numbers of the underlying TCP connection, the
type of request (GET, POST, etc.), the URL being

1Including UDP transactions, even though these are not
strictly speaking “connections”.
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requested, the response code from the server and the
number of bytes of each request and response.
BitTorrent Logs: Lb includes records for BitTorrent
[8] transactions. These records include IP addresses and
port numbers for all observed peers as well as myriad
information about the protocol, such as have messages,
choke and unchoke messages and handshaking informa-
tion.
The log data—especially Lc—requires calibration be-

fore use such that measurement errors and ambiguities2

do not skew our analysis. This turned into an arduous
multi-step process as outlined below.
Bro will report in Lc information for all attempted

connections. For 14 days during our collection period
we hit a bug in Bro whereby each arriving packet was
reported as its own “connection”. While often this man-
ifests after some particular time within the day we re-
move all such logs from further analysis as obviously
Bro was not working properly. Since we cannot readily
re-create the situation that triggers this bug we were
not able to determine its cause. It may be caused by
some network effect and hence bias our analysis by pre-
venting us from observing that phenomenon. However,
given the relatively small number of days removed we
do not believe this has a large biasing effect. Further,
even if we understood the cause, the data is left in such
a state such that accurately analyzing it would be im-
possible.
For the remaining days in the Lc dataset we find a

large number of “connections” that are essentially bo-
gus for the purposes of further analysis. For instance,
scanning traffic that sends a SYN to a non-active ser-
vice port will show up in the connection logs as a “con-
nection”, but accomplishes no useful work. We filtered
connections from our analysis for five basic reasons:
Filter F.1: As noted above, Lc includes both success-
ful and unsuccessful connections (e.g., port scanning,
or contacting an unresponsive host). This latter type
of connection typically manifests as either (i) having a
duration that is either zero or unknown or (ii) report-
ing unknown values for the number of bytes sent in one
or both directions. Since these entries are incomplete,
we remove them from further analysis unless otherwise
specified.
Filter F.2: While monitoring the network, Bro logs
unexpected events in its “notice” and “weird” logs. We
can then use these unexpected events to further remove
connections from Lc that may skew our analysis. An
example unexpected event that we have found particu-
larly useful is an entry that indicates Bro has observed
a TCP ACK for sequence number x, but has only ob-

2We are not the first to notice such in the Bro connection
logs. E.g., see the discussion in [6] about the ambiguities
of determining a connection’s final “state”—e.g., “properly
terminated”—from these logs.

served data sequence numbers through y (for x > y).
In constructing the Lc logs Bro will assume all bytes
through x have been transmitted. However, given the
missing data this may be a wrong assumption. We as-
sume that in the cases where the gap—i.e., x − y—is
large the difference is caused by an errant ACK and
not by measurement loss (since we have verified that
measurement-based loss is rare, see § 2.2). By using
the size of the reported gap—i.e., x−y—we remove con-
nections from further consideration for which we do not
observe large amounts of the data. We verified our as-
sumption by spot checking potentially problematic en-
tries in Lc with packet-level traces (see § 2.2) and we
indeed find connections with relatively few packets and
a large errant ACK, which corrupts the byte counts.
Filter F.3: Given that one errant packet can lead to
a gross mis-calculation of a connection’s size we started
an augmented logging scheme on January 11, 2012 us-
ing Bro’s “conn-stats” policy. Using this the Lc logs
include packet counts (in each direction). This makes
it straightforward to filter out cases where we observe a
disproportionate amount of data volume for the number
of packets observed.
Filter F.4: Additionally, the logs in Lc contain Bro’s
version of each connection’s “history”. The history records
(for each direction) whether Bro has observed: SYNs
(and SYN+ACKs), data-carrying packets, ACKs, FINs
and resets. We can then use this to ensure connections
progress as expected. We adopt the following criteria
(and order) for removing connections from further anal-
ysis: (1) Connections with no SYN. (2) Connections
with no SYN+ACK. (3) Connections reporting multiple
SYN+ACKs with intervening packets (i.e., not simply
retransmitted SYN+ACKs). (4) Connections reporting
non-zero data bytes sent for a given direction, but for
which no data-carrying packets are observed. (5) Con-
nections that have no history of acknowledging trans-
mitted data.
Filter F.5: The above checks winnow Lc to what looks
to be a reasonable set of connections in the logs taken
after January 11 2012—i.e., when we started recording
packet counts and hence could leverage those in our fil-
tering process. However, we are left with a small num-
ber of connections that if accurate would reflect an ex-
tremely fast sending rate (e.g., just under 1 Gbps). We
suspect these connections are not accurate since after
January 11, 2012 we no longer find such high transmis-
sion rates. Therefore, we adopted the following strat-
egy. We observe a maximum aggregate rate for one
CCZ IP address of roughly 160 Mbps when using the fil-
tered post-January 11, 2012 logs. Based on this, we set
a per-connection threshold of 200 Mbps—25% higher
than the maximum observed aggregate—and remove
from further analysis any connection that occurs before
January 11, 2012 and exceeds the threshold. This is a
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Filter Type Pre-Jan/11 Post-Jan/11
All Conns. 849M 166M

F.1 365M 44M
F.2 11.6K 2.1K
F.3 — 6.2K
F.4 30M 6.8M
F.5 3.8K —

Remaining 454M 114M
53.5% 68.7%

Table 1: Connection filtering breakdown.

fairly crude filter. However, given the lack of such high
transmission rates after January 11, 2012 we are con-
fident that Bro erred in some way when logging these
connections.
In table 1 we present a high-level summary of the con-

nections filtered from further analysis by our calibration
strategy. Since we used a slightly different strategy for
the logs before and after January 11, 2012 we list the
results separately. We find that a significant fraction of
the connections are removed for various reasons. This
is not surprising given previous analysis of similar con-
nection logs (e.g., [6] shows more than 90% of logged
connections are caused by scanners and hence are junk).
We find the bulk of the filtered connections are removed
by filter F.1 due to incomplete information or by filter
F.4 for showing an unexpected history. Since the logs
before January 11, 2012 do not include packet counts
filter F.3 is not employed. Likewise, filter F.5 was added
as a heuristic in the absence of packet counts and hence
is not used after January 11, 2012. In total we find
nearly 570M legitimate connections over the course of
our 14 month data collection.
Finally, recall that we find single hosts utilizing roughly

160 Mbps across connections and hence set a filtering
threshold of 200 Mbps for a single connection in the
pre-January 11, 2012 logs. Our final dataset contains
69 connections that show performance between 160–
200 Mbps. We consider these connections to be some-
what suspect. However, since the number is small they
do not overly skew our results in general.

2.2 Packet Traces
The second source of data is packet-level traces. The

torrent of traffic precludes the capture of all traffic for
the entire measurement period. We therefore collect
packet traces from the 11th through the 18th of each
month, as follows. We divided each day in the col-
lection period into six hour blocks and then collect a
one-hour trace starting at a random time within each
block. While we captured full packet payloads, saving
all such traces quickly became logistically burdensome.
We therefore randomly chose one trace to retain in full
for each day and stripped the payload from the remain-
ing three traces. This leaves us with 7 hours of full pay-
load traces and an additional 21 hours of header-only
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Figure 1: Overview of CCZ traffic.

traces for every month in our collection.
Failing to collect all packets that cross our moni-

toring point can lead to biased or wrong conclusions.
Therefore, before using our packet traces we must as-
sess measurement-based packet loss. While tcpdump re-
ports a number of losses this is often not telling as it is
difficult to understand (and hence count) what the ap-
plication did not observe. Rather, we analyze the traces
themselves for signs of missing packets. In particular,
we analyze TCP traffic for cases where we observe an ac-
knowledgment for data we never observe. These “gaps”
represent cases where the ultimate recipient clearly re-
ceived the data, but the data was not recorded in our
traces. This analysis provides only an indication of the
measurement-based loss rate since it does not include
all traffic (e.g., excluding non-TCP traffic).
In 330 of the the 392 traces in our dataset we find

no measurement-based loss. In the remaining traces we
find loss rates of (i) less than 0.001% in 43 traces, (ii)
between 0.001% and 0.01% in 18 traces and (iii) 0.013%
in 1 trace. Therefore, while individual measurement-
based loss events may impact individual analyses we
undertake, we conclude that in a general and statistical
sense the measurement-based loss rate is low enough to
not impact the insights we derive from our dataset.

2.3 A First Look
Figure 1 gives a sense of the overall CCZ network and

traffic. The remainder of the paper will further analyze
these aspects of the dataset, but here we aim to pro-
vide an overview to build the reader’s intuition. First,
we observe 90 local IP addresses active on each day of
our dataset. This is as expected based on the scope
of the CCZ project and because the project provides a
standard router to each home that does NATing for all
internal devices. In § 3.1 we further analyze the data to
understand how many devices are active behind these
NATs on each day. The figure also shows that local
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hosts communicate with tens of thousands of remote
peers each day. On median we observe traffic to 44K
remote peers with the 5th percentile at 20K and the
95th percentile at 88K. We next turn our attention to
the observed traffic. As shown in the figure, we observe
a median of 2.3 million connections in Lc each day. Of
these, a median of 1.3 million—or 57%—are valid (per
the discussion in § 2.1). Finally, the top two lines on
the figure show the number of bytes sent and received
from/to CCZ hosts on a daily basis. The amount of
data sent by CCZ hosts is roughly 30 GB per day on
median, with a maximum of 411 GB. Meanwhile the
amount of data received by CCZ hosts is 129 GB per
day on median, with a maximum of 240 GB.

3. ORIGINS AND DESTINATIONS
Our first set of analyses aims to understand traffic

sources and destinations CCZ users employ.

3.1 Devices
We know that there are roughly 90 homes connected

to the CCZ network, but we do not know the num-
ber of devices connected within these homes. The CCZ
project provides each residence with a router which con-
nects in-home devices to the fiber link via Wifi or wired
Ethernet. This router acts as a NAT such that each
house uses only a single public IP address. We use
a technique similar to that described in [14] to count
hosts behind these NATs. For each of our 392 hour
long packet traces we run p0f [21] to obtain SYN-based
operating system determinations for each connection.
Further, if payload is present—as it is for 98 of our
traces—p0f reports the HTTP user agent string asso-
ciated with HTTP requests.
To determine the number of devices behind a particu-

lar NAT we start with the number of operating systems
produced by the SYN-based signatures, denoted Si for
each CCZ IP address i. This is a lower bound on the
number of devices. For instance, if we find a particu-
lar CCZ IP address x has traffic from both Windows
7 and OSX we can determine that at least two devices
are present behind the NAT, but we cannot determine
how many of each device is present. Therefore, Sx will
be set to two.
For the connections on which we also have HTTP

user agents we look for opportunities to augment our
count by noticing that one OS has traffic from multiple
browsers and assuming each device would have only one
primary browser this indicates multiple devices. Con-
tinuing the example from above if we note OSX traffic
from Chrome, Firefox and Safari then we would change
OSX’s device count contribution in Sx from 1 to 3 de-
vices. Therefore, in total for this example we have
Sx = 4. This use of the user agent string can in one
sense be viewed as a lower bound. Similar to not being
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Figure 2: Number of unique devices observed.

able to tease apart two Windows 7 machines based only
on SYN signatures we cannot tease apart two Windows
7 machines both running Chrome, even with the extra
user agent information. On the other hand, if our as-
sumption that each device runs only a single browser
in general is wrong we are overestimating the number
of devices by attributing different browser traffic to dif-
ferent devices. We stress, however, that we aim to only
roughly determine the number of devices behind each
NAT, hence small errors are not problematic.
Finally, we note that our methodology is inherently

conservative because our traces cover only 4 hours each
day in which we can used SYN-based fingerprints and
we have only a single random hour per day of user agent
information. Therefore, we are no doubt undercount-
ing the number of devices behind each NAT. This is
likely especially true for mobile devices that may not
be around when our traces are being taken.
Figure 2 shows the number of devices we find to be

active on each day of our packet-level dataset. We find
that like many of the other plots in this paper the graph
is divided into three portions by the academic summer
break. The general dip that we observe from May–
August during various analyses corresponds to the de-
creased student user population during summer break.
Before summer we generally observe 160–220 devices
per day. In the summer we see the user population
drop off as we only find 140–180 devices per day. After
the summer we find 200–300 devices per day, a healthy
increase over the previous academic year. We find the
January and March 2012 device counts to be low. This
is explained by the January data being collected be-
fore spring semester classes started and the March data
being collected over spring break.
In terms of operating systems, table 2 shows the break-

down of the minimum, maximum and average percent-
age of various operating systems per day in our dataset.
We find variability across time—which we largely as-
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OS Min Mean Max

Windows 7/8/XP 32 40 58
OSX 15 21 28
iOS 9 15 21
Linux 3 9 15
Other 8 15 20

Table 2: Minimum, mean and maximum per-
centage of OS observed per day.
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Figure 3: Distribution of residential remote
peers.

cribe to our data collection methodology. As discussed
above, with a more comprehensive view we believe the
variability would be reduced. In general each OS’s max-
imum population is twice its minimum population and
the mean is the middle of the two ends of the spectrum.
Also, we note that the median, while not shown, is ±1%
of the mean in all cases.

3.2 Peer Location
We next assess the location of the remote peers in our

Lc dataset. In particular, we assess the prevalence of
remote peers that correspond to end-user devices and
not servers. We use the SpamHaus PBL [20] to de-
termine if a remote IP address is an end-user device.
While the PBL is maintained with help from the own-
ers of some address blocks, the list still represents an
approximation. However, we note that the list is gen-
erally viewed as “good enough” for operational tasks
such as email filtering as evidenced by the widespread
use of the PBL. Colloquially we will refer to end-user
devices as “residential”—even though strictly speaking
they are not all in homes—and all other hosts as “non-
residential”.
CCZ hosts make valid connections to a median of 44K

remote peers per day over the course of our Lc dataset.
Figure 3 shows the distribution of the fraction of peers
that are residential for each day of the dataset. We
find that as little as 10% and as much as 55% of the
peers are residential across the dataset. The median

of the distribution indicates that approximately 41% of
the remote peers are residential. In § 4.4 we revisit peer
location with an eye towards correlating it with traffic
characteristics.

3.3 Fanin / Fanout
We next aim to get a sense of the number of hosts each

CCZ household interacts with on a daily basis. We do
this by analyzing Lc for the number of hosts that each
local CCZ household contacts (“fanout”) and the num-
ber of remote hosts that initiate contact with local CCZ
hosts (“fanin”). The top two plots in figure 4 show the
median and maximum daily fanout across CCZ hosts,
while the bottom plots show the fanin. The plots on
the left side include all connections, while the plots on
the right include only valid connections.
In terms of fanout we make several observations. First,

we find that the median household contacts roughly
1,000 remote peers per day. This holds when consid-
ering all connections and only valid connections. We
see slight growth in the median fanout over the course
of our dataset, but we also see the expected dip during
the academic summer break. Additionally, we find a
short but pronounced dip in fanout during December
of 2011. This occurs around the holidays and hence
we believe this reflects a generally smaller user pool at
that time (e.g., students leave for break, residents visit
family).
While more variable than the median, we find the

maximum fanout to be generally around 10K—an or-
der of magnitude higher than the median. Similar to
the median, the maximum is not heavily influenced by
the removal of bad connections. While there may be
small dips in the maximum fanout due to the academic
calendar, we do not see as much influence on the heav-
iest users (in term of fanout) as on users in general.
We now turn to the bottom plots in figure 4 which

show the fanin. The median fanin when considering all
connections (bottom left) is between 50 and 100—with
an increasing trend—across the dataset. However, when
only considering valid connections the median fanin is
generally zero (no point shown due to the log scale of the
y-axis). The exception is from September to December
we find the median to be a handful of valid connections
initiated by remote peers. This matches our general
model of remotely initiated traffic to a residence, which
suggests that aside from peer-to-peer traffic there are
unlikely to be many externally available services run-
ning in homes. Given that the results show an uptick
of fanin when considering all connections and also the
fanin does not show the dips during academic breaks we
conclude that there are a moderate number of scanners
probing CCZ hosts every day. The maximum fanin is
not only larger but also more variable than the median.
This again suggests that there is an effect from scanners
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Figure 4: Fanout (top plots) and fanin (bottom plots) for both all connections (left plots) and valid
connections (right plots).

at play.
Finally, we note that the average fanin is 514 and 202

for all connections and good connections, respectively,
across the dataset. Further, we find the percentage of
hosts that exceed this average is 13% and 10% for all
and good connections, respectively. This shows that the
distribution is skewed and a few hosts are generally re-
sponsible for much of the fanin. For fanout we find an
average of 1,364 and 938 for all connections and good
connections, respectively, across the dataset. We also
determine that the percentage of hosts exceeding the
average is 28% and 36% for all and good connections, re-
spectively. This again shows skew towards a smaller set
of hosts driving the aggregate fanout discussed above,
even though the skew is not as pronounced for fanout
as for fanin.

4. TRAFFIC MIX
We next turn our attention to providing an overview

of the traffic patterns we observe.

4.1 Transport Protocols

We first briefly assess the transport protocols we find
on the CCZ network. Our Lc dataset includes rich sum-
maries of all TCP and UDP traffic. To understand what
is not captured in the Lc logs, we analyze the packet
traces. Over our 392 hours of packet traces we find
that more than 99.8% of the packets are either TCP
(69.3%) or UDP (30.5%). In the remaining traffic we
find that ICMP makes up roughly 0.1% and a handful
of other protocols each send much less than 0.1% of the
packets across our dataset.
We use Lc for the remainder of the analysis in this

section. In terms of connections, recall that figure 1
shows the overall number of connections per day in
our dataset. We find that TCP generally constitutes
roughly two-thirds of the connections per day—with a
minimum contribution of 53% and a maximum contri-
bution of 84%—while UDP makes up the balance.
Finally, in terms of the data volume we find that TCP

carries over 99% of the data on each day in Lc. This
stands in stark contrast to the packet- and connection-
based results above, which indicate that UDP’s con-
tribution is roughly one-third. This shows that UDP
transactions, while frequent in number are small in size.
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4.2 Heavy Hitters
We next turn to assessing each CCZ host’s contribu-

tion to the aggregate traffic observed. Figure 5 shows
the fraction of bytes sent to each CCZ host (left) and
from each CCZ host (right). We sorted the hosts by
their relative contribution (the sort is independent for
each plot). The horizontal line shows the average per-
host contribution. In terms of arriving data (left plot)
we find that 31 hosts receive at least an average share of
the traffic. Further, we find that the top host receives
roughly four times as much as the average—receiving
roughly 4% of the bytes across our dataset. Meanwhile,
the smallest share is 10,000x less than the average.
The right-hand plot in the figure shows the relative

data volume transmitted by CCZ hosts and shows a dif-
ferent result than when considering data received. We
find that the top CCZ sender transmits nearly 20% of
the data volume across our dataset! Meanwhile in rela-
tive terms we find some hosts contribute nearly nothing
to the overall data volume sent. Finally, this direction
is more skewed compared to the data received as only
17 hosts contribute at least the average share of data
transmission volume.
Finally we note that there is some overlap between

the top senders and top receivers. Considering the top
ten hosts in each direction we find four hosts that ap-
pear on both lists. The host sending nearly 20% of the
data departing from the CCZ network is not within the
top ten in terms of data receivers. However, the top
host in terms of data reception ranks fifth in terms of
data transmission.

4.3 Applications
We now analyze our dataset to determine the top

applications. We identify applications first by Bro’s
“service” determination in the Lc logs. This leaves a
significant fraction of the traffic unclassified. In par-
ticular, while Bro logs fine-grained details about Bit-
Torrent traffic in Lb it classifies such traffic as “other”
or “http” in the Lc logs. We therefore analyze the Lb

logs to determine which “other” and “http” connections
to classify as BitTorrent and change their designation.
Additionally, Bro does not recognize some traffic using
TCP port 51314 as BitTorrent. We have found this
to be the default port used by the Transmission Bit-
Torrent client and the traffic we find on this port is
consistent with BitTorrent activities and therefore we
roll this traffic into the BitTorrent count. Finally, we
use the service port number—i.e., the destination port
of the SYN that starts a connection—to identify the
remaining applications.
Using this process we find thousands of applications.

To focus our attention on the most prevalent applica-
tions we winnow our analysis to applications that con-
stitute one percent of either (i) the aggregate number

Service Hosts Conns. Sent Rcvd.
HTTP 90 242 M 789 GB 41 TB
Flash 89 343 K 4.4 GB 2.9 TB

BitTorrent 70 23.6 M 7.8 TB 2.3 TB
HTTPS 90 33 M 437 GB 1.1 TB
Steam 58 36 K 142 MB 584 GB
DNS 90 187 M 7.8 GB 43 GB

Other-1111 25 1.4 M 724 GB 37.4 GB
Other-8332 20 6.5 M 7.1 GB 8.2 GB
Minecraft 22 6.2 M 329 GB 7.2 GB
Unclassified 88 68 M 7.0 TB 3.7 TB

98% 12% 41% 7%

Table 3: Aggregate traffic volume for popular
application protocols across the entire dataset.

of connections, (ii) the total traffic volume sent by CCZ
hosts or (iii) the total traffic volume received by CCZ
hosts. Using this approach identifies the nine most pop-
ular application protocols.
Table 3 shows the traffic breakdown for the top ap-

plications. There are two service port numbers that are
ambiguous in our data. Port 1111 traffic seems to cor-
respond to either Flash or Daodan malware. Port 8332
traffic seems to correspond to both a wireless security
camera being tested as part of the CCZ experiment, as
well as some BitCoin [7] traffic. Rather than settling
on specific designations we leave these nebulous in the
table.
The second column of the table shows the number of

CCZ IP addresses we observed using the particular ap-
plication over the course of our 14 month dataset. As
expected we find DNS, HTTP, HTTPS and Flash are
used by (nearly) all users. We find BitTorrent is used
by over three-quarters of the users. The Steam gaming
application is used by nearly two-thirds of the users.
The remaining top applications are used by roughly
one-quarter of the user population each. The last two
columns of the table show the traffic volume in each di-
rection. We find that even among the top applications
there is a difference of four orders of magnitude in data
volume across the list (for both directions). Further we
find that the top application—HTTP for data reception
and BitTorrent for data transmission—comprises an or-
der of magnitude more traffic volume than the second
ranked application.
Table 3 gives the amount of traffic we do not attribute

to one of the top nine applications in the “Unclassified”
row. As shown in the table, in terms of connections
and bytes received the fraction of traffic involving other
applications is modest and expected in that we know
from previous studies and intuition that the top ap-
plications will not be responsible for all traffic. How-
ever, the percentage of bytes sent that are unclassified
is 41%—which is striking. We know from our analy-
sis to determine the top applications that no one port
number is responsible for more than 1% of the bytes
sent across any day in our dataset. This suggests that
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Figure 5: Relative contribution of each CCZ host for arriving bytes (left) and transmitted bytes
(right).
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Figure 6: Distribution of the number of connec-
tions and service ports for each day.

this uncategorized traffic volume may well be using a
large variety of ports as a policy evasion technique.3

In figure 6 we plot the distribution of both the num-
ber of unclassified connections per day and the number
of distinct service port numbers found in the unclassi-
fied traffic. The difference between the number of ser-
vice ports and the number of connections is roughly a
factor of 20 across the distribution—with the difference
growing towards the tail. We also find the number of
service ports has a median of over 11K and a maxi-
mum of 64K, which is the number of possible ports.
This illustrates the heterogeneity of the traffic and that
it belies aggregation given the information present in
the Lc logs. However, the port spread and the traffic
volume suggests that much of the unclassified traffic is

3The CCZ does not impose policy-based restrictions based
on port number, but the remote peer could well be under
such constraints.

Service Host Conn. Sent Rcvd.
HTTP 2.04 1.02 2.35 1.01
Flash 4.00 5.74 5.60 2.38

BitTorrent 5.01 3.81 1.13 3.19
HTTPS 2.97 3.47 3.14 3.85
Steam 5.99 6.75 6.76 5.03
DNS 1.01 2.02 4.80 5.79

Other-1111 7.60 7.64 7.52 7.65
Minecraft 7.93 6.33 5.38 7.69
Other-8332 8.45 8.22 8.33 8.40

Table 4: Average rank of each of the top appli-
cation protocols per day.

likely peer-to-peer traffic trying to avoid detection.
While table 3 gives an overview of the entire 14 month

dataset it does not give any indication of the volatility
across time. To gain a sense of the relative contribution
of each of the nine top applications we rank them by
(i) number of hosts using the application, (ii) number
of connections, (iii) bytes sent and (iv) bytes received
for each day in our dataset. Table 4 gives the average
rank of each of the top nine applications in each cate-
gory across the entire dataset. In terms of the number
of hosts using an application and the amount of traf-
fic received the average daily rank is nearly identical to
the aggregate rank (with only the last two applications
swapping positions in both cases). This suggests that
these rankings are fairly stable across our dataset. How-
ever, in terms of the data volume sent by CCZ hosts
and the number of connections we find that only the
top three or four, respectively, applications are iden-
tical across the aggregate and average daily ranking.
After that the ranking diverges and hence shows that
non-trivial daily variations in application usage do in
fact occur.

4.4 Volume vs. Peer Classification
In § 3.2 we consider the prevalence of residential hosts
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Figure 7: Distribution of the fraction of traffic
exchanged with residential hosts.

in the set of remote peers with which CCZ hosts commu-
nicate. We now turn our attention to understanding the
contribution of these remote peers to the overall traffic
volume. Figure 7 shows distributions of the fraction of
incoming and outgoing bytes exchanged with residen-
tial peers for each day in our dataset. The plot shows
a dramatic difference between incoming traffic and out-
going traffic. We find that residential peers contribute
around 5% of the incoming traffic on median and at
most 20% of the incoming volume. However, we find
that in terms of outgoing traffic the median is around
55% and the maximum is approximately 75%. This is
consistent with the volumes found for various applica-
tions in § 4.3. The top applications in terms of received
traffic volume are traditional client/server applications
(e.g., HTTP) where we would expect to be receiving
data from a centralized server rather than a end-user
host. Meanwhile, in terms of outgoing data volume we
find that the top application is BitTorrent, which is by
its very nature a distributed system that relies on end
hosts and not on infrastructure level servers. There-
fore, the disparity in figure 7 is not surprising, even if
striking.

4.5 Web Servers
Table 3 above shows that HTTP is by far the largest

source of traffic flowing to CCZ hosts and is the sec-
ond ranking application in terms of traffic sent by CCZ
hosts. Given HTTP’s prominence in the traffic mix we
briefly assess the popular servers being accessed as an
indication of how users are employing their large capac-
ity networks. For this analysis we consider the “Host”
header in HTTP traffic, which is recorded in out Lh

logs. This is then correlated without our Lc dataset
to produce traffic volumes for each site. We aggregate
sites based on the second level domain.
Table 5 shows the top 15 web sites in terms of traf-

Site Vol (%) Days Min,Med,Max
youtube.com 19 420 1 2 5
llnwd.net 15 402 1 3 247

nflximg.com 14 416 1 3 60
edgesuite.net 8.4 335 1 4 145

apple.com 2.8 332 1 7 67
xvideos.com 1.5 268 4 9 60
hulu.com 1.4 101 1 19 119

fbcdn.net 1.2 245 5 10 26
megaupload.com 1.0 133 1 20 6574

filesonic.com 1.0 78 1 62 5012
espn.com 0.9 62 2 4087 6554
tumblr.com 0.8 97 5 16 223

akamaihd.net 0.8 91 2 24 5250
pandora.com 0.7 45 5 15 1291

google.com 0.6 9 6 17 44

Table 5: Top 15 sites in incoming traffic volume.

fic downloaded to CCZ hosts. The table gives the site,
the percentage of traffic volume the site contributes,
the number of days the site is ranked in the top 15
sites across the dataset and then the minimum, median
and maximum daily ranking of the given site. The ta-
ble largely shows popular sites (e.g., as listed by Alexa
[4]) and CDNs are the most common. Further, we find
volatility in the top 15 sites. For instance, only three
sites are within the top sites nearly every day in our
dataset. Further, over half the top sites are ranked first
at least once. We also find that some sites are bursty.
An example is “espn.com” which ranks as high as two, is
ranked in the top 15 only 62 times (roughly one-seventh
of the days) and more than half the time ranks above
4,087. In this particular case, the likely cause is pop-
ular sporting events driving the access patterns (e.g.,
in particular the one-in-seven pattern suggests perhaps
NFL football games have some influence). We also find
that roughly one-third of the aggregate data volume is
from video streaming sites. Another roughly 25% of the
volume is from content distribution networks.

Site Vol (%) Days Min,Med,Max
google.com 20 420 1 3 8
facebook.com 6.8 420 1 2 10

youtube.com 5.8 419 1 4 13
datei.to 4.5 3 1 2 5321

4shared.com 4.3 26 1 1142 6721
yieldmanager.com 4.0 420 1 3 9
fbcdn.net 2.5 413 3 5 12

doubleclick.net 2.2 419 3 6 11
revsci.net 1.1 188 5 11 34

yahoo.com 0.9 146 1 13 38
google-analytics.com 0.9 151 7 11 20

adnxs.com 0.8 116 4 15 67
citizengroove.com 0.8 1 1 1642 3253
twitter.com 0.6 46 2 18 38

peeje.com 0.6 3 2 568 1835

Table 6: Top 15 sites in terms of outgoing traffic
volume.

Finally, table 6 shows the top 15 web sites in terms of
data transmitted by CCZ users to web sites. In this case
we see more consistency in the sites across the dataset
than for incoming traffic, as six of the sites are in the
top 15 list nearly every day. However, we again find
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Figure 8: Daily aggregate sending and receiving
rates.

volatility, as well. For instance, more than half the
top 15 sites again reach the highest rank on at least
one day. In addition, we again find bursty behavior.
E.g., “citizengroove.com” is overall in the top 15 sites
in terms of volume, but appears in the daily top 15 list
only once—at the top position—while its median rank
is 1,642. Finally, we observe some low-rate, but consis-
tent sites such as Twitter, which only spends roughly
10% of the days in the top site list, but is ranked be-
tween 2–38 for each day in the dataset and ultimately
accrues enough volume to be listed in the top 15.

5. OBSERVED TRANSMISSION SPEED
Thus far we have considered who CCZ users commu-

nicate with and what protocols and applications drive
the communication. We now turn our attention to the
salient feature of FTTH networks: speed. Figure 8
shows the aggregate sending and receiving rates across
all hosts in the CCZ for each day in our dataset. The
plot shows that the daily aggregate incoming traffic rate
is roughly 10 Mbps. As in some of the results from pre-
vious sections we find dips in the plot during summer
and winter break. In terms of local hosts transmitting
data we find that in general the aggregate rate falls
between 1–10 Mbps with similar modest dips during
academic breaks.

5.1 Per-Host Speed
We will now focus on individual CCZ hosts.4 For

each connection in the Lc logs we evenly distribute the
number of bytes transmitted over the duration of the
connection into 1 second bins (86,400 bins per day). We
track each direction independently. This even spread-

4While we attempt to count the number of actual hosts be-
hind each IP address in § 3.1, we have no way to do that for
the Lc dataset that forms the basis of the analysis in this
section. Therefore, “host” in this section is an IP address.
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Figure 9: Throughput for top 1% bins.

ing of data across a connection does not reflect reality
for two basic reasons: (i) applications do not send and
receive data uniformly across the duration of a connec-
tion and (ii) TCP’s congestion control algorithms [5]
constantly adjust the sending rate based on the per-
ception of the network conditions. However, both of
these dynamics happen outside our view and therefore
for this initial analysis using the average rate suffices.
However, future work will include a more fine-grained
packet-level analysis.
As sketched above, we break our data into 7.2 bil-

lion one-second bins—i.e., 86,400 bins for each direc-
tion, day and user in our dataset. To concentrate on
periods when hosts are transmitting relatively rapidly
we winnow our dataset to the top 1% (36M) bins in each
direction. Figure 9 shows rate distributions for the top
bins in each direction. The first point on each line shows
the 99th percentile of our entire dataset, which is a send-
ing rate of approximately 0.5 Mbps and a receiving rate
of roughly 2.7 Mbps.
The figure shows that more than 90% of the top

1% receiving bins represent a rate under 10 Mbps. In
other words, 99.9% of the overall bins do not exceed a
rate available from common commodity residential net-
works.5 Or, on average each user spends approximately
14.5 minutes per day employing higher-than-commodity
network capacity. We also find that 0.0008% of the over-
all bins—or roughly 69 seconds per day per user—show
an aggregate receiving rate of more than 100 Mbps.
Due to commercial networks often being asymmetric,

the CCZ network provides a larger relative improvement
in uplink rates than in downlink rates. While users only
exceed a nominal commodity receiving rate (10 Mbps)
0.1% of the time, they exceed a nominal commodity
uplink of 0.5 Mbps 1% of the time.6 Further, we note

5We are aware of faster community networks, but 10 Mbps
is the right order.
6Again, our aim is not to quibble about commodity rates,

10



Service Recvd (%) Buckets (%)
HTTP 91 98
Steam 3.3 1.3

BitTorrent 0.9 17
HTTPS 0.9 79

Unclassified 3.9 55

Table 7: Breakdown for top receiving applica-
tions.

Service Sent (%) Buckets (%)
BitTorrent 36 80
HTTPS 8.1 57
HTTP 5.2 75

Minecraft 2.7 15
Other-1111 2.0 2
Unclassified 46 90

Table 8: Breakdown for top sending applica-
tions.

that CCZ user transmission rates exceed 10 Mbps ap-
proximately 0.1% of the time and 100 Mbps roughly
0.0002% of the time. The data suggests that residential
users’ current usage patterns and applications are gen-
erally well-served by commodity downlinks, but not by
commodity uplinks.
Finally, we note that we find 2.6 million (7.3%) times

whereby a bin for the same host is included in both
the top 1% sending and receiving lists. This illustrates
that in a non-trivial number of cases a particular host is
engaged in high-speed data transfers in both directions,
e.g., as part of a peer-to-peer network.

5.2 High-Rate Applications
Having considered the aggregate and per-host capac-

ity utilization observed in the CCZ network, we now
analyze which applications are active during these pe-
riods of high capacity use. The following analysis takes
into account only the top 1% of the bins as discussed
in § 5.1. Table 7 shows the percentage of the incoming
data volume for each application that receives at least
approximately 1% of the incoming data volume. Addi-
tionally, the table shows the percentage of the top 1%
bins in which the service was active. The table shows
that HTTP is responsible for 91% of the data volume
when the capacity is being highly utilized. Further, 98%
of the top 1% bins contain HTTP traffic. The results in
table 7 are similar to the results in § 4.3, even if some
of the more minor or less bulky (i.e., DNS) applications
have fallen off the list developed in § 4.3.
Table 8 shows our observations for top applications

in terms of data transmitted by CCZ users during the
top 1% utilization periods. Much as we found in § 4.3
we find BitTorrent to be the largest contributor—both
in terms of volume and active bins. The unclassified
category is significant during high-rate sending periods,

but to illustrate the difference between the uplink use and
downlink use by CCZ users.
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connections in our packet traces.

just as it was for traffic sending in general. This result
is expected given the general prevalence of unclassified
traffic found earlier and the analysis in § 4.3 that sug-
gests this traffic is peer-to-peer file trading, which we
expect would aim for high capacity utilization.

6. TRANSMISSION SPEED CAUSES
In § 5 we study observed transmission rates on a host-

level basis. We find that these rates do not often use
anywhere close to the full capacity. A natural question
is: why? In this section we analyze our packet traces
to try to get an initial understanding on what is limit-
ing performance. TCP’s performance is dictated by a
set of congestion control algorithms [5] and has a num-
ber of dependencies, including (i) the TCP receiver’s
advertised window, (ii) the size of the TCP sender’s re-
transmission buffer, (iii) the RTT of the network path,
(iv) the loss rate along the network path and (v) the
application’s sending pattern. Of these, (ii) and (v)
are not readily visible in packet traces, while the others
are either exposed directly by the protocol or can be
readily estimated from packet traces. In this section we
use these pieces of information to study connection-level
transmission speed.

6.1 Potential Speed
TCP’s performance is ultimately constrained by the

RTT of the network path and the receiver’s advertised
window. In particular, the upper-bound on through-
put is advwin

RTT
. This upper-bound requires the sender’s

retransmission buffer to be at least as big as the adver-
tised window, the application feeds a constant stream
of data to TCP and no loss occurs such that TCP’s con-
gestion window dynamically adjusts. For the purposes
of assessing how fast hosts can send and receive data
we assume these requirements hold.
We analyze our 392 packet trace files for RTTs and
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advertised windows found in each TCP connection’s
three-way handshake.7 We filtered connections per the
process in § 2, which left us with 13.3 million connec-
tions. Figure 10 shows the distributions of potential
sending and receiving rates with respect to the CCZ
hosts. This shows that roughly one-third of the con-
nections for both directions cannot attain 10 Mbps as
the advertised window is too small for the given RTT.
Also, 26% of the connections can receive in excess of
100 Mbps, while 46% can transmit at least 100 Mbps.
Finally, we find that only 2% of the connections can re-
ceive at least 1 Gbps, while 6% of the connections can
transmit at 1 Gbps. These results show that in roughly
two-thirds of the cases the CCZ users can potentially
use more capacity than a 10 Mbps commodity broad-
band connection provides via a single TCP connection.
While two-thirds of connections have the potential to
exceed a commodity rate, recall that we only ever see
users exceeding this rate when aggregating across con-
nections about 0.1% of the time. Therefore, there must
be some other factor(s) that are responsible for limit-
ing the sending and receiving rates we observe on the
network which we attempt to identify in the following
subsections.

6.2 Connections Without Loss
We now move on from the potential best-case rates

that TCP can possibly attain to examining the rates
TCP does attain in our dataset and the reasons for those
rates. As an initial investigation we examine the largest
10 connections in terms of data transmitted from a CCZ
host in each of our 392 one-hour trace files. Connections
that send a large amount of bulk traffic are likely to be
trying to do so as fast as possible while shorter connec-
tions may have different goals and/or application dy-
namics that make studying performance more difficult.
Our corpus of 3,920 connections involves 79 CCZ hosts
and 3,079 remote hosts. We analyze the data flowing
from the CCZ to the remote host as our vantage point
is then close to the sender and hence makes estimation
of various sender properties straightforward (e.g., RTT,
congestion window size, loss rate). A vantage point
close to the receiver makes these sender properties dif-
ficult to estimate.
We first only consider connections that do not experi-

ence loss—or 633 of the 3,920 connections in our corpus.
(We will consider the balance in the next subsection.)
Using Bro, we determine the advertised window and
the maximum flight size for each connection. The flight

7Note, this analysis assumes the advertised window in the
handshake represents the largest amount of buffering avail-
able for the connection. Systems that auto-tune their buffers
[18] will therefore likely utilize a larger advertised window
than given in the SYN handshake. However, the results
in this section are at least a lower bound on the potential
performance.
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Figure 11: Distribution of flight size in connec-
tions without loss.

size is the amount of data transmitted but not ACKed
at any given time and approximates TCP’s congestion
window. We then compare the maximum flight size
with the maximum advertised window to assess whether
the TCP sender is limited by the receiver’s advertised
window. We find that in 12% of the connections the
sending TCP is in fact constrained by the advertised
window. In the remainder of the connections there is
some other phenomenon that is constraining the send-
ing rate.
In figure 11 we plot the distribution of maximum

flight size over all connections with no loss and that
we did not find to be advertised window limited above.
We find modes of varying size in this plot at 16KB,
32KB, 64KB, 96KB and 128KB. These are suggestive
of some sender-side buffering issue that is limiting the
flight size. The natural candidate would be the sender’s
TCP retransmission buffer—which limits the amount of
data that can be transmitted before receiving an ACK
in case the data is lost and needs resent. The limit could
also come from an application—e.g., in an attempt to
limit the overall sending rate. While the 1 Gbps fiber
link is unlikely to become overloaded it is possible that
some applications are trying to protect infrastructure
within a house (e.g., a wireless network). When sum-
ming the various modes we find they account for roughly
23% of the 633 connections with no loss.
While 12% of the connections without loss are con-

strained by the advertised window and the data sug-
gests that another 23% are hampered by some sender-
side buffer, that leaves nearly two-thirds of the connec-
tions unexplained. Without additional insight from the
end hosts themselves it is hard to reason about the per-
formance of these connections. While we cannot pin-
point the cause, we can say that the network path and
the receiver’s buffer do not appear to be the constrain-
ing issue.
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Figure 12: Distribution of flight size in connec-
tions with loss.

6.3 Connections With Loss
Finally, we turn to the 3,287 connections in our large

connection corpus that experience loss. In these cases
theory suggests the loss rate and RTT contribute to
dictate performance [15, 16]. However, the advertised
window, retransmission buffers and application behav-
ior can still limit performance. As such, we repeat the
analysis we did for the no loss case above. First, we find
that the maximum flight size reaches the maximum ad-
vertised window size in 20% of the connections with
loss, which is a higher proportion than in the no loss
connections.
As above we next plot the maximum flight size dis-

tribution in figure 12. As with the no loss case we find
several modes that suggest a sender-side buffer limit
that ultimately constrains performance. In this case
we find this happens in roughly 22% of the connections
that experience loss. Therefore, overall we find 20% of
the connections with loss constrained by the advertised
window and another 22% likely constrained by a sender
side buffer (such as TCP’s retransmission buffer). That
leaves 58% of the connections to be constrained by some
phenomenon outside our purview.
As a final test we assess how much slower the con-

nections with loss progress than theory suggests should
be possible given the network path characteristics. As
there are 58% of connections with loss and two-thirds
of connections without loss being constrained by an un-
known phenomenon, we attempt to see if TCP itself
is a limiting factor given network characteristics. We
used the TCP model that was developed in [15, 16]
and applied in [12] to calculate the rate each connec-
tion could potentially use given the connection’s RTT
and loss rate.8 Figure 13 shows the distribution of the

8We used the median RTT for the connection and b = 1 for
the model given in [12].
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Figure 13: Ratio of theoretical throughput to
actual throughput for each connection.

rate suggested by the TCP model versus the rate we ob-
served for each connection that experienced loss in our
dataset. We find that in less than 10% of the cases the
observed throughput actually outperforms the model.
In the remaining roughly 90% of the cases the observed
throughput is less—often by orders of magnitude—than
the performance predicted by the model. This plot re-
enforces our finding that the network path and TCP’s
congestion control algorithms would allow connections
to transmit more rapidly. However, host limits and ap-
plication behavior are holding back performance.

7. SUMMARY
This paper aims to present an initial broad charac-

terization of traffic from an operational 1 Gbps FTTH
network. We make several contributions, as follows.

• We are the first (to our knowledge) to characterize
myriad aspects—from structural aspects to traf-
fic patterns to capacity utilization issues—of an
operational FTTH network over a 14 month time
period.

• Our study provides another data point on the use
of residential networks (e.g., a reappraisal of some
aspects of [13]).

• We find that even when given virtually unlimited
bandwidth the majority of the time users do not
retrieve information from the Internet in excess
of commercially available data rates. However, in
terms of transmitting data we find the FTTH users
in our study use more capacity than available via
commodity broadband.

• Similar to the last point we find 1 Gbps links
to a single household are not well utilized, which
presents an opportunity for new applications and
services to capitalize on such resources.
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• We find that TCP connections do not attain any-
where near 1 Gbps in performance even though
plenty of unused capacity exists and TCP the-
ory suggests the network paths are amenable to
(much) higher rates than realized.

• We find that the likely reasons for TCP’s low per-
formance are end host buffering issues in many
cases. In some cases this manifests in TCP’s ad-
vertised window, but in others we find evidence of
a sender-side buffer limitation.

Finally, we note that our goal in this paper was for
broad characterization. Every analysis we present begs
many additional questions. Our future work will involve
digging more deeply into many of these questions.
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