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Introduction
• “Smart” edge vs. “Dumb” core!

• Logic for connections pushed to edges!
• Core networks properly route packets!
!

• Core has gained functionality (slowly)!
• Edge responsible for rapid evolution
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Introduction
• Empirical measurement keeps understanding of 

network properties up-to-date!

!

• Measurement challenges mental models!

• E.g., packet reordering!

• E.g., session arrival times
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Introduction
• Leverage empirical measurement to study 

edge-driven shifts!

• Available bandwidth!

• Transport protocols!

• Policy and security threats!

!

• Presenting a subset of results
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Available Bandwidth
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Fiber-To-The-Home Traffic:!

Characterization and Performance!



Motivation
• Last mile bandwidth has leapfrogged past 

current content offerings!

• E.g., Google Fiber, municipal fiber!

• What will users do with significantly higher 

capacity?!

• Are protocols up to the task of utilizing 

significantly higher bandwidth?
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Data
• Observe traffic in a Fiber-To-The-Home 

network, the Case Connection Zone (CCZ)!

• ~90 homes with bi-directional 1 Gbps !

!

• Use Bro IDS to continuously collect data!

!

• Collect packet traces one week per month
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Users behave similar to residential 

users with significantly less bandwidth
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Result 1



Result 1 - Traffic Mix
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Even with essentially unlimited bandwidth, 

connection performance is low 
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Result 2



Result 2 - Aggregate Sending Rates
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Result 2 - Fast Sending
• For 99% of the time users send data under a 

rate of 0.5 Mbps!

• For 99% of the time users receive data under a 

rate of 3.2 Mbps!

!

• Each day, a user averages just over 1 minute of 

receiving at a rate of at least 10 Mbps
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TCP implementations limit connection 

performance
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Result 3
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Maximum TCP Throughput

Throughput = WindowSize 
RTT



Advertised window - Outgoing
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Flight Size
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Other Results
• Incoming bytes more evenly distributed across 

homes than outgoing bytes!

• CDNs and streaming video make up bulk of 

incoming HTTP traffic!

• HTTP and BitTorrent dominate fast incoming and 

outgoing transmission periods, respectively!

• Based on loss rate, TCP theory suggests faster 

connection speeds are possible!

• Etc. 17



Publications
• [SA14] Matt Sargent and Mark Allman. Performance Within A Fiber-

To-The-Home Network. ACM Computer Communications Review, 

44(3), July 2014.!

!

• [SSDA12] Matt Sargent, Brian Stack, Tom Dooner, and Mark Allman. 

A First Look at 1 Gbps Fiber-To-The-Home Traffic. Technical Report 

12-009, International Computer Science Institute, August 2012.
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Transport Protocols

19

Revisiting TCP’s Initial Retransmission Timeout!

!

Deriving Application Sending Patterns From the 

Transport Layer



Revisiting TCP’s Initial 

Retransmission Timeout!
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Motivation
• TCP requires a timeout to recover from certain 

types of loss!

!

• The retransmission timeout (RTO) adjusts as a 

connection progresses!

• Adjustments based on round trip times
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Motivation
• Initial RTO value should reflect a “reasonable” 

timeout !

!

• RFC 2988 specifies initial RTO of 3 seconds!

• But RTTs are typically under 1 second!

!

• What impact would lowering the initial RTO from 

3 seconds to 1 second have on network traffic?
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Data
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Result 1
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Up to 2% of connections retransmit their SYN 

in each dataset



Result 2
• Fewer than 0.1% of connections have RTTs 

greater than 1 second (1.1% at Dartmouth)!
• Send a spurious SYN!
• Congestion window will collapse
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Result 3
• 10% performance improvement: !

• ranges from 43% (LBL-1) to 87%(ICSI-4)!
!

• 50% performance improvement:!
• 17% (ICSI-1 / SIGCOMM) to 73% (ICSI-4).
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Publications
• [PACS11] Vern Paxson, Mark Allman, Jerry Chu, and Matt 

Sargent. Computing TCP’s Retransmission Timer, June 2011. 

RFC 6298.
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Deriving Application Sending 

Patterns From the Transport Layer
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Motivation
• Applications are responsible for handing data to 

TCP!

• TCP is tuned for bulk transfers!

• No longer strictly bulk transfer!

!

• Can we understand application sending 

patterns by studying the transport layer?
29



Methodology
• Collect packet traces from the CCZ and the 

International Computer Science Institute!

• Split connections into sending periods!

• Local!

• Remote!

• Both!

• None
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Methodology
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How often does silence appear in 

connections?
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Result 1



Result 1
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Most connections have only a few 

internal silent periods
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Result 2



Result 2
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Silent periods are long enough to 

negatively affect TCP performance
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Result 3



Result 3
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Number of N Periods > RTO Per Connection



Other Results
• Trailing silences highlight persistent behavior in 

TCP connections!

• Focus on silent period characteristics for specific 

applications!

• Around 1/3 of connections with silent periods 

spend at least 90% of their duration in silence!

• Etc.
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Publications
• [SBA 14] Matt Sargent, Ethan Blanton, and Mark Allman. 

Modern Application Layer Transmission Patterns from a 

Transport Perspective. In Passive and Active Measurement 

Conference, March 2014.
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Policy and Security Threats

40

Inferring Filtering via Passive Observation!

!

Understanding IGMP Neighbors2 Response 

Behavior



Inferring Filtering via Passive 

Observation
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Motivation
• Traffic filtering is used by edge networks!

• No idea how wide spread specific filtering is!

• Previous efforts require active measurements !

!

• Can we come up with a passive method to infer 

policy filters?
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Data
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• Collect packet traces at 5 /8 darknets!

• 2.5% of IPv4 address space!

• Receive packets from 4.1M /24s



Methodology
• Use traffic markers to infer filtering policy!

• Types of traffic that we can expect to observe 

from many network locations!

• Initial focus is on Conficker traffic
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We expect Conficker on 1.6M out of 

4.1M /24s
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Result 1
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Result 2

We judge 55% of /24s that contain 

Conficker infectees
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Result 2

Expect !
Conficker?

Observe!
Conficker?

>=5* known 
infectees? Judgement Total

F F - None

F T - Rare <1%
T T - No Filter 27%
T F T Filtering 28%
T F F None 45%

* Threshold developed in dissertation
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Result 3

Aggregating up to routed prefix enables 

us to judge 699M IP addresses (28% of 

routable addresses)



Limitations
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• Traffic markers are imperfect!

!

• Finding a traffic marker is difficult!

• Most types of scanning traffic arrive at the 

darknet from < 1% of /24s



Other Results
• Additional details on Conficker behavior!

• Validation of our methodology against Netalyzr 

“ground truth”!

• More detailed breakdown of judgements for 

routed prefixes!

• Evidence of multiple policies in place for routed 

prefixes, especially for large prefix sizes!

• Etc.
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Publications
• [SCAB15] Matt Sargent, Jakub Czyz, Mark Allman, and Michael 

Bailey. On The Power and Limitations of Detecting Network 

Filtering via Passive Observation. In Passive and Active 

Measurement Conference, March 2015.
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Understanding IGMP Neighbors2 

Response Behavior
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Introduction
• Internet Group Management Protocol (IGMP)!

• Multicast group membership management!
!

• Distance Vector Multicast Routing          
Protocol (DVMRP)!
• Enables routers to exchange multicast 

routing information
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Introduction
• AskNeighbors2 packets explicitly request 

routing information from a router!
!

• Neighbors2 packets contain multicast 
neighbor information!
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Introduction
• AskNeighbors2 packets have been used to 

study network topology!
• MERLIN!
• mrinfo!

• Connectionless exchange of information 
creates a potential attack vector
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Reflection
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Attacker Victim

2.2.2.2

1.1.1.1 3.3.3.3AskNeighbors2 
Source IP: 3.3.3.3 

Destination IP: 2.2.2.2



Amplification
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Attacker Victim

2.2.2.2

1.1.1.1 3.3.3.3Neighbors2 
Source IP: 2.2.2.2 

Destination IP: 3.3.3.3



Methodology
• Write custom probing module for ZMap !

!

• Scan IPv4 address space with 
AskNeighbors2 requests!
!

• Capture Neighbors2 responses!
• Re-probe responding hosts 10, 20, and     

30 days after the initial scan
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Initial Scan
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Re-probes

60

• 262K (86%) out of 305K hosts respond in at 
least one of three re-probes!
!

• 161K (52.8%) hosts respond to all three      
re-probes!
• Call these hosts “stable responders”



Amplification
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Denial of service attack
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• Hit list of 48K stable responders with at least 
5X amplification!
!

• Send each stable responder 53 packets per 
second



Denial of service attack
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• This strategy produces 1.27 GB of data 
forwarded to the victim each second!
• Rate of 10.2 Gbps!
!

• Requires 570 Mbps in total from the attacker



Pulse attack
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• Similar to denial of service attack!
• Rather than a sustained attack, direct a large 

burst of traffic to a victim!
• Repeat burst every few seconds!
• Disrupt congestion control with temporary 

congestion at the victim’s network



Pulse attack
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• Send a single packet to each of the 48K 
stable responders with at least 5x 
amplification!
• Generates at least 192 Mbps worth of traffic 

sent to the victim!
• Requires 10.7 Mbps from the attacker



Loop Attack
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AskNeighbors2



Loop Attack
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1.1.1.1

2.2.2.2
3.3.3.3



Other Results
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• Unstable responders!
• Packet amplification!
• Anomalous responses!
• Responder locality!
• Etc.



Conclusion
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Applications

70

• CCZ application sending patterns suggest 
prevalence of distinct transactions!
• Types of applications used on CCZ largely 

mirror other residential networks!
• Suggests non-bulk demand is pervasive!

!

• May need to introduce additional mechanisms 

to improve TCP performance further



TCP Performance
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• Behavior of TCP is defined by both the 

underlying specification and implementation!

• TCP implementations are outpaced by last 

mile bandwidth!

• TCP specification is outpaced by lower RTTs



Questions?

72
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