

1 Introduction
Computer networks connect users with a rich array of
valuable services. Key to the operation of these services
is some way for the service to authenticate users and
transactions. While the required strength of the authen-
tication varies across applications, it is clear that some
services involve sensitive activity (banking, e-commerce,
etc.) and thus strongly established identity is crucial. Un-
fortunately, establishing strong identity and transactional
authentication remains elusive.

Current authentication mechanisms largely utilize
username and password pairs. However, passwords are
inherently insecure because they can be readily stolen
and used by attackers. Proper management of passwords
can go a long way towards mitigating the fundamental
risk associated with their use. However, as the number
of services users access balloons the pain of construct-
ing strong and unique passwords for each service and
keeping those passwords safely offline increases dramat-
ically. This leads users to coping strategies that expose
the fundamental flaws of simple password schemes, such
as (i) choosing simple passwords, (ii) sharing passwords
across services and (iii) leveraging password caches on
their computers to manage their large sets of creden-
tials. In turn, each of these coping mechanisms can be
leveraged by attackers to steal passwords (e.g., by com-
promising machines, setting up phishing schemes, brute
force guessing, etc.). Once stolen there is little protection
against fraudulent password use. A number of systems
that move beyond username and password pairs have
been proposed, including the following1:

Cryptography: Ubiquitous use of cryptography-based
identities mitigates some of the problems with establish-
ing identity. Users could simply register a public key
with a service and retain a corresponding passphrase-
protected private key. A key pair could be safely used
across services and therefore the user would only need
to deal with one passphrase, meaning that caching that
passphrase in some database would not be necessary.
Even if we extend to a few key pairs per user to decrease
cross-service sharing the task is not onerous. A user
could also use the same passphrase for numerous key
pairs for various services—again, lessening the burden
on the user. A final consideration is that cryptographic
schemes can work well for relatively sophisticated users
(e.g.,ssh), but these systems have to be implemented in a
way that unsophisticated users can readily utilize. There
are also already several software keystores [9, 2] which
manage these keys for different applications.

OpenID: This project [8] seeks to move beyond users
grappling with a large number of credentials by pro-

1This is not a comprehensive list, but describes the general classes
of solutions that have been proposed.

viding a single independent credential that can be used
across services2. Users will have to then manage only
a single (or fewer, anyway) identities. This is useful for
users and likely reduces the reliance on password caches.

Pwdhash: This scheme tries to thwart phishing attacks
by constructing site-specific passwords on the user’s be-
half [11]. The passwords are of the formh(p, n), where
h() is a hash function (e.g., SHA-1),p is the user-entered
password andn is the service’s fully-qualified domain
name (FQDN). In this way, the user can employ the same
p relatively safely across services because authenticating
does not revealp to the service. Further, if a fraudulent
service coaxes a user into providing a password the given
password will not match the actual password for the le-
gitimate service because the password will actually be
h(p, n′) wheren′ is the FQDN of the fraudulent service
and therefore the password will not work if replayed to
the legitimate service.

Smartcards: These devices, including those built into
USB devices (such as the Aladdin eToken [1]), provide
a public key cryptographic resource. They can perform
key operations when inserted in the computer. When a
smartcard is connected to the host, the host can have un-
limited useof the keys to perform signature and key ex-
change operations, but does not gainaccessto the keys.

SecureID: These fobs [13] provide an external one-
time password. The token presents users with a new
password periodically (e.g., every minute). The corre-
sponding service understands the progression of pass-
words the token presents to the user and therefore ac-
cepts only the currently legitimate password. This sys-
tem is highly secure in that it forces users topossessin-
formation that is external to the transaction path to au-
thenticate. The downside is that these tokens are not
generic and are tied toa particular service(which is usu-
ally highly sensitive). Therefore, it is not possible for the
user to leverage a single SecureID token across the large
variety of services they utilize, except perhaps in the con-
text of some transitive-trust framework like OpenID.

All these previous systems are vulnerable to host com-
promise. These can include extracting keys from a key-
store, capturing passwords (for OpenID orpwdhash)
with a keylogger, acredential usageattack where a com-
promised host uses the keys in an attached smartcard,
or session hijackingwhere an established session is hi-
jacked for the attacker’s use, even when perfectly secure
user authentication is established [12]. Thus, for criti-
cal transactions, such as those involved in transferring
money (or the equivalent [3]) we need additional authen-
tication schemes that work in the face of end-host com-

2OpenID does not actually doauthentication, but onlytransitive au-
thentication. Once a user authenticates to one OpenID service they can
be authenticated to others. How users are authenticated to the first ser-
vice is service-dependent, although passwords are used in many cases.

1

promise. Apart from our proposal, there are three other
systems with this goal.

Trusted Boot: A few users, such as one of the authors,
simply assume that their system may be compromised
when performing on-line transactions. Thus instead of
using their normal operating system, they will boot from
a clean, trusted CD, such as a new Ubuntu CD. Even
some financial industry groups recommend that busi-
nesses use this technique [4], although it does impose
a huge burden on users who wish to conduct an online
transaction.

Independent Paths: Out-of-band communication
with a user allows for an additional level of authentica-
tion. For instance, some banks in Europe have begun
authenticating transactions via text messages to a cus-
tomer’s cell phone—which provides a message service
that is independent from the Internet path over which
the transaction is occurring [18]. Although effective for
some applications, there are cost and convenience issues
with this technique.

ZTIC: The IBM Zone Trusted Information Channel
(ZTIC) [16] is a USB-based trusted path to the user, and
is designed to authenticate transactions. The ZTIC has
a small display, a push-button to acknowledge consent,
and a smart-card connection. Although the theme is very
similar to our intent, the implementation is very differ-
ent. The ZTIC acts as a cryptographic endpoint thereby
inserting itself into the data path for transactions and
potentially becoming a performance bottleneck. Also
the ZTIC requires site-specific information to understand
the application being proxied, which means new appli-
cations will require modifications to the ZTIC. Finally,
the ZTIC lacks a keystore, instead relying on an external
smartcard.

Our position in this report is that a crucial miss-
ing piece within the Internet architecture is a general-
purposetrusted path to the userfor authentication of ses-
sions and transactions, combined with the cryptographic
key management in an easy-to-use design. Such a path
must be trustworthy regardless of the state of the compo-
nents of the path between the service and the fob itself.3

We use the notions of (i) host-independence (a la the Se-
cureID card), (ii) the genericness of using cryptography-
based identification, (iii) the intuitiveness of a physical
key (e.g., a house key), and (iv) the ubiquity of USB to
propose a fob that users and services can leverage for
direct communication between the user and a large num-
ber of arbitrary services. Such a fob would not only be
enabled for new applications, but could work within ex-
isting application frameworks.

3Obviously these components can prevent communication, butour
goal is that they should not be able to fraudulently authenticate.

2 The Necessity of Trusted Paths

With the growing use of online banking for both business
and personal use, attackers have now focused consider-
able effort on stealing money through technical means.
The primary focus has been on targeting end-user sys-
tems with increasingly sophisticated malcode, as a prof-
itable criminal enterprise.

For example, some strains of bank attacking malcode
will capture SecurID and similar one-time passwords [6],
launder connections through the victim’s computer [6],
and act as a full man in the middle [7]. Attackers have
even targeted two-agent control, where two parties in a
company must approve a transaction [6]. The losses from
these attacks are substantial, the most recent attack cost
Duanesburg Central School District in upstate New York
$500,000 [5], and individual small bulinesses have lost
upwards of hundreds of thousands of dollars in single
attacks [6].

This all points to a simple observation: conventional
end hostscan not be trusted. Therefore going forward
sensitive transactions (e.g., financial) must be conducted
within a framework thatassumes that a typical user’s end
system is already compromised, and therefore must not
rely on it operating correctly to prevent fraudulent activ-
ity. Thus of the previous techniques, onlytrusted boot,
independent paths, andthe ZTIC can work in a secure
manner.

3 Approach

Our goal in developing an identification and autho-
rization system is to increase security without over-
burdening users with complicated new machinery, while
being able to assume that the end host is compromised
by an attacker. To this end we envision an independent
key fob for authentication that meets the following goals.

First, people already have a wealth of experience with
handling one particular identification token: their physi-
cal keys. From an early age people are taught the rules
of handling their keys: anyone who has your key can un-
lock your door and copy your key, losing a key means not
being able to unlock something, re-keying (e.g., doors) is
expensive, duplicating a key allows a lock to be shared,
etc. In addition, people are well attuned to not losing
(rather than “misplacing”) their keys. People know how
to handle keys and so our goal is to develop a fob that
is both literally and figuratively akin to these objects that
people already understand.

Second, as noted in§ 1, a general purpose device is
susceptible to a variety of mischief, from watching a
user’s keystrokes to replicating information found on a
disk to changing transactions as they occur. An indepen-
dent purpose-built authentication device with limited ca-
pabilities and a narrow interface is much less vulnerable
to such attacks. Further, because the device is indepen-

2

dent and highly portable, identity can be readily estab-
lished from arbitrary hosts.

Third, while information must pass through the net-
work and a user’s end host which could both potentially
be compromised it is crucial to establish a trusted path to
theuser. By employing simple input and output on the
device itself transactions can be authorized by the user
regardless of the state of the information path.

Fourth, by only performing signatures, the device is
not on the critical path for bulk traffic. This works be-
cause the amount of information that needs to be authen-
ticated is a small fraction of the total traffic.

To achieve our goal of constructing atrusted path to
the userwe propose building a cryptographic store that
would fit on peoples’ physical key ring. Such a device
would consist of a USB port, a speaker, a single push-
button and a modest amount of storage space to hold a
user’s key pairs (and ancillary information). We provide
a more in-depth discussion of the feasibility of the hard-
ware in§ 5. To use the key fob the user simply inserts it
into an open USB port of their host machine. Services
wishing to authenticate via the fob will interact with
clients on the host machine that will in turn communicate
with the fob via the API given in§ 4. All messages from
the service to the fob will be cryptographically signed
by the service such that they cannot be tampered with
in transit and so the fob can establish the identity of the
ultimate requester.

The fob will be capable of holding keys of threeus-
age types. The usage type is specified when the key is
generated or imported.
Autonomous Keys merely verify the presence of the key
fob. A service can request that a particular piece of data
be signed by an autonomous key and the fob will comply.
The fob will inform the user of the key’s use through the
speaker. Except for this latter feature, these keys are akin
to those provided by USB smartcards (e.g., the eToken
[1]), which resist key-capture attacks.
Prompted Keys verify the presence of both the key fob
and a human. When using such a key, the fob first
presents a request to the user (“please confirm the use of
key X”) and the activity is not conducted until the user
presses the button. The prompt should be expected based
on the context of whatever work the user is conducting.
Prompted keys can transparently work within many ex-
isting protocols, such assshand client-side certificates
for TLS. Prompted keys, by establishing user presence,
also resist key-usage attacks from compromised hosts.
Service Prompted Keys require the service to supply an
audio file that will be played via the fob’s speaker, which
is then signed if the user consents. For instance, the audio
file might prompt “Push the button to authorize transfer
of $50 from savings account 8372 owned by John Smith
to checking account 2954 owned by Alice Jones”. If the

user agrees with the request they press the button which
will then trigger the signing of the audio file with the
given key. This key type offers a trusted path between
the service and the user to verify a transaction, adding
resistance to session capture attacks for transactions.

We also note that each local key pair held in the fob,
kl, can be configured at generation or import time be
service-scoped—i.e., to track the services that have used
kl in the past. Any time a service makes a request (signed
by the service’s keyks) to use a service-scopedkl the fob
consultskl’s service-scope list and if it does not contain
ks the fob will prompt the user to verify that they want to
interact with this unknown requester. If the user agrees—
e.g., because they are in the midst of a transaction with a
new service—the transaction continues andks is added
to kl’s service-scope list. This is akin tossh’s host key
cache and user prompt to verify an unknown host.

Our full vision is for service prompted keys to be the
norm as they represent a secure path from the service to
the user. The other two usage types are not as strong.
In particular, autonomous keys that will sign any data
for any requester should be avoided in the general case,
but they have some uses (see§ 8). The prompted usage
type is envisioned mainly for backward compatibility for
services that already use keys for various activities and
therefore would benefit from the key store on the fob but
are not yet savvy enough to send audio files to the fob.

For instance, considerssh. Currently a user can acti-
vate anssh-agentto cache their passphrase and provide
authentication without interacting with the user. Option-
ally, this agent can be accessed remotely using existing
sshconnections (via agent forwarding). This allows the
credentials on some hostA to be used not only to login
to a hostB, but also then to login to hostC from hostB.
Of course, ifB is compromised, it leaves the user vulner-
able to a credential usage attack. If, instead, a prompted
key is used in the fob, this improves security by limiting
credential usage attacks by eitherA or B. And ideally,
the sshtools could be made savvy enough to use a ser-
vice prompted key to get specific authorization to use a
key (e.g., “push button to authorize login from hostB to
hostC”).

In addition, the fob will have an optional password
to provide some protection against casual mis-use of a
fob someone happens upon. If the user has set a pass-
word the user will have to enter their password on the
host computer before prompted keys or service prompted
keys will work, as these keys will be encrypted with the
password. Autonomous keys will work regardless of
password-based authentication (see§ 8 for an example
of the necessity of this approach). We note two prob-
lems with using a password in an attempt to protect the
fob. First, the password is being entered into a possi-
bly compromised host computer and therefore could be

3

stolen. Second, simple passwords could be brute forced
if someone has possession of the fob itself. Therefore,
while strong fob passwords would aid security we do not
expect that passwords will be of large benefit in the gen-
eral case and, hence, consider them optional.

We note that our approach’s heavy reliance on keep-
ing the user in-the-loop via the speaker has downsides,
including presenting difficulty for hearing impaired peo-
ple, language issues, operating in noisy environments, as
well as potential privacy concerns when used in public
spaces. However, we believe these issues can be worked
around (e.g., by providing a headphone jack for use in
public spaces or allowing users configure their language
in their profile on a service’s web site). We also do not
believe that audio is fundamental to the security provided
by the fob. A small screen with service-signed textual
messages would provide the same level of trustworthi-
ness to the authentication process [16]. There are clear
cost and usability tradeoffs between a speaker and a dis-
play. While these usability issues will need to be ad-
dressed in some fashion we consider them out of scope
for this initial sketch of our design.

A final usability note is that practical issues like re-
peating prompts or dealing with multiple simultaneous
prompts will need to be addressed. We do not further
explore such problems in this report as our initial goal is
to develop a strong trusted path before delving into the
nitty-gritty practical details. However, while we defer
usability issues initially we do believe that the device we
propose passes the smell test (e.g., relative to the criteria
developed in [10]) for being a plausibly attractive mech-
anism for users and services.

4 API
Here we specify the fob’s API in general terms. Expe-
rience may dictate that this set of routines be changed
and we elide small details, but we believe the given API
captures the fundamental operation of the fob.

CheckPassword (p) This routine is used to validate a
passwordp that has been entered on the attached host,
which will in turn allow the fob’s full capabilities to be
used. The fob will announce each password check as this
would serve to warn users of password guessing or brute
force cracking attempts. Further, the fob will block all
activity after a small number of failed attempts (until the
fob is removed and reinserted).

SetPassword (pold, pnew) This routine changes the
fob’s password frompold to pnew. The fob will use
the built-in speaker to ask the user for permission to
change the password to protect against illegitimate pass-
word changes.

GenerateKey (t, s) This routine will generate a new
key pair of usage typet (as discussed in the previous
section) and return the public key. Thes parameter is

a boolean that denotes whether the new key should be
service-scoped.GenerateKey()is the most secure way to
populate the fob with a key pair because the private half
of the key is never stored outside the fob. The generation
process will be confirmed by the user.

ImportKey (ks, kp, t, s) This routine will import the
given key pair (ks,kp) and consider the key to be of type
t. The s parameter is a boolean that denotes whether
the imported key should be service-scoped. This routine
is useful for migrating identities that have been created
elsewhere to the fob. However, this method of populat-
ing the fob’s key store is not as secure as generating keys
on the fob itself because the private half of the imported
key was previously stored at some other (potentially inse-
cure) location. The importing process will be confirmed
by the user.

Sign (d, kid) This routine returns the signature of the
given datad created by using the fob’s keykid. For an
autonomous key, this proceeds normally with the fob an-
nouncing the action. For a prompted key this routine will
ask the user to authorize the use ofkid before returning
the signed data to the caller. For a service prompted key
this routine will fail (see next routine). If the key is con-
figured to be service-scoped and the requester has not
previously been authorized, the user will be asked to au-
thorize the interaction with the requester before the data
is signed and returned.

SignAudio (a, kid) This routine is similar to theSign()
call, but rather than arbitrary data an audio tracka is pro-
vided. The audio is played for the user and the user then
authorizes the transaction by pressing the button, result-
ing in a signature of the audio file. This is the only sign-
ing routine available for service prompted keys.4

SessionKey (c, kid) This routine will generate a ses-
sion key with the specified server certificatec and lo-
cally stored keykid that is suitable for for SSL/TLS [15]
or other appropriate authenticated key-exchange proto-
cols. As with theSign()and SignAudio()routines this
operation can be service-scoped depending on the con-
figuration ofkid.

GetPublicKeyList () This routine returns a subset of the
public keys stored on the fob. In particular the list con-
sists of all non-service-scoped keys and any keys within
whose service-scope the requester falls. Further, if the
user has set a password and the password has not yet
been verified only autonomous keys are included in the
response to this call.

GetPublicKey (kid) This routine returns the public half
of kid. If no key is given then a default key will be re-
turned. This will allow new services to easily bootstrap.

4Note this requirement will necessarily be relaxed in the real fob to
accommodate displays as suggested above.

4

It should be noted that the fob’s primary objective is
integrity, not confidentiality. However, theSign() rou-
tine is data type agnostic and can therefore deal with en-
crypted data. Further, theSignAudio()will accept en-
crypted, as well as unencrypted, audio tracks. While per-
haps not of great import in many cases, this functionality
can be used to protect information between the service
and the user (e.g., so that details of a transaction such
as an account number cannot be found by eavesdroppers
along the path).

5 Feasibility

Our vision is that for security to be dramatically in-
creased, wide-scale use of the fob is necessary—both
to protect users and to incentivize services to utilize the
mechanism. Hence, one obstacle to the feasibility of the
fob is economics: a fob must be inexpensive to produce
in large quantities or the device will not be adopted. Al-
though we have not yet produced a fob, a preliminary
evaluation suggests that the bill of materials could be
kept under $30. Beyond the simple packaging and cir-
cuit board, the device requires a small speaker, an op-
amp to drive the speaker, approximately 256 MB of flash
storage (sufficient for thousands of keys), 5 V to 3.3 V
power conversion, a small noise circuit for a physical
RNG, and a CPU with sufficient processing power (such
as the 66MHz ST Microsystems STR710 [14]) to per-
form cryptographic operations and implement a Delta-
Sigma D-A to drive the speaker [17]. The total cost is
$15 in single-unit quantities. Assuming another $15 for
assembly and a plastic case, it seems reasonable to con-
struct the fob for $30, enabling a $60 retail price.

6 Additional Considerations

In this section we briefly touch on a number of additional
issues that have come come up during our high-level de-
sign.
Tamper Resistance: Our vision prefers easy duplica-
tion to tamper resistance. Tamper resistance to any high
degree of certainty would require substantial changes to
the fob’s CPU and would likely drastically increase the
cost. On the other hand, allowing for relatively easy du-
plication matches peoples’ expectation with their physi-
cal keys, allowing them to store a backup in a safe place:
simply open the case and attach an internal connector to
copy the contents of one fob to another.5 This expecta-
tion could be reinforced with a notice on the fob itself.
Cell Phone Integration: Rather than constructing a new
device for the fob functionality an alternate approach
would be to integrate the fob with a cell phone. This
is tempting because such a combination would not re-

5Even without such a feature, if an attacker can open the fob, the
flash can be read directly, so an internal “copy port” benefitslegitimate
users without significantly helping attackers.

quire people to carry another device.6 However, mod-
ern cell phones are not simple devices, but rather ap-
proach the complexity of general computing platforms.
Therefore, securely implementing the fob’s functionality
in cell phone software will be difficult at best and will
likely fall into the familiar traps end host software falls
into (as discussed in§ 1). This could potentially impinge
on the fob’s ability to securely reach the end user. If the
fob and cell phone were kept distinct devices and both
simply housed in the cell phone’s case this would allay
the security concerns and might be attractive to users.
Bluetooth: In addition to using USB the fob could be
connected to hosts using bluetooth. This capability might
be crucial for devices that do not have USB ports (e.g.,
smartphones). While we do not consider the detailed im-
plications of using bluetooth in this initial exploration
we note that exposure to malicious bluetooth peers is not
dramatically different from plugging the fob into a com-
promised host.
Multi-Stage Authentication: We also note that the fob
can be used to provide only partial authentication. That
is, a user may still be required to know a password for
two-factor authentication. The optional password check
in the fob itselfmust notbe considered a complete two-
factor authentication scheme. In fact, the service will not
even know whether the fob has a password set or not.
7 Attacks
We now briefly discuss several avenues for attacking key
stores and how our fob design mitigates these concerns.
Capturing Private Keys: Since private keys never leave
the fob7 a host or network compromise should never be
able to acquire a private key stored in the fob.
Denial-Of-Service: Elements on the transaction path
can deny the user service by not forwarding messages
to the fob. Alternatively, the fob is susceptible to DoS
attacks that simply overwhelm the fob’s computational
capabilities by requesting a large number of signatures.
While no doubt annoying to users neither of these attacks
leads to fraudulent use of credentials. Further, the fob’s
announcements will prevent a silent DoS whereby the
user is left wondering why legitimate operations are not
working or are slow.
Credential Usage Attack: The fob is specifically de-
signed to resist credential usage attacks present in other
cryptographic keystores. First,all accesses are exposed
to the user, even autonomous keys can’t be silently used.
Second, and more importantly, much of the use of the
fob requiresuser presence and authorization.
Session Hijacking Attack: If the attacker controls the
user’s end host, they can hijack a session after it has been

6Arguably since people generally carry their keys and we are aiming
for a form factor that would fit on their key ring, carrying a fob is not
overly onerous.

7At least for keys that are generated by the fob—which is the rec-
ommended usage scenario.

5

established. The fob cannot protect against this attack for
autonomous or prompted keys, but authenticating on the
transaction level with service prompted keys limits the
damage that can be done by session hijacking.
Sidechannel Attacks from the USB: There are two
classes of side-channel attacks which can be attempted.
The first class is through anunmodifiedUSB port, where
a corrupted host can attempt a timing or similar attack.
The fob should be designed to resist such attacks. The
second class arise frommodifiedUSB ports, which could
perform power or power-glitching attacks. We do not
expect to be able to defend against such attacks with off-
the-shelf hardware components.
Physical Capture: The greatest aspect of resisting phys-
ical attacks is the placement of the fob on peoples’ key
rings. Users already have a model of physical keys which
matches the fob’s access model and therefore we expect
the fob to be reasonably controlled by users. Addition-
ally, if the user can use astrongpassword, the password
can protect prompted and service prompted keys. How-
ever, we note that using a weak password affords no pro-
tection from brute force attacks on a stolen fob and could
perhaps give the user a false sense of security.
Social Engineering Attacks: Many attacks on the In-
ternet (and elsewhere) are based on social engineering.
Although the fob can’t mitigate all social engineering at-
tacks, the use of service prompted keys may limit some
attacks. For example, the attacker would need to con-
vince the user that a transaction spoken by the fob (or
perhaps the computer’s speaker if lucky) represents a le-
gitimate action the user wishes to commit.

Resistance to attack also requires due diligence on
the part of service providers. For example, the audio
prompts should not be general (“authorize transfer from
savings account to checking account”), but should in-
clude information about the particular transaction (“au-
thorize transfer of $50 from Nick Weaver’s checking ac-
count to Mark Allman’s checking account”). Further, the
messages should contain a nonce such that the second
author cannot replay messages to pad his income.
8 Extensions

In addition to the functionality described above there
are several additional jobs we could task the fob to per-
form. However, we wish to keep functionality tightly
constrained, so possible extensions are tightly related to
the fob’s primary functionality. First, the key fob could
be used to navigate physical locks (e.g., for a room), for
which autonomous keys are a natural fit. Second, the fob
could ease key exchange by simply inserting the fob into
a foreign computer (e.g., at a bank branch) and allow-
ing that computer to retrieve one’s public key. Finally,
we envision that the storage space on the fob could also
provide “thumb drive” functionality for small pieces of
software that would run on the connected hosts and fa-

cilitate the use of the fob (e.g., a fob-savvyssh-agentor
Firefox TLS extension). This could allow ready use of
the fob even before host-based software is updated to in-
teract with the fob. These additional topics will be con-
sidered in more detail in future work.
9 Summary

Being able to construct secure network services ulti-
mately requires a service to be able to soundly authen-
ticate users and transactions. The current method of
authenticating transactions relies on an uncompromised
path between the service and the user. However, time
and again we have seen that attackers compromise cru-
cial elements of the path allowing them to easily steal
users’ credentials and employ these for fraudulent activ-
ities. Our proposed approach to this problem is to con-
struct a cryptographic key store on a small USB device
that fits on peoples’ key rings. Further, this device will
have simple input and output capabilities such that re-
quests can be validated and authorized without relying
on any element of the path between the service and the
key store—and in fact will even work in the face of com-
promised elements. Yet at the same time, such a device
could integrate into existing cryptographic protocols, in-
cludingsshand SSL/TLS, granting a more secure foun-
dation even in the presence of compromised end-hosts.

We believe that a small independent device is both fea-
sible and the best path for building a crucial and founda-
tional element of future Internet systems. However, we
are also interested in engaging the community in discus-
sions about how to secure information in the face of in-
evitably compromised elements in such a way that users
can both get their work done and have confidence that
their information is not being used fraudulently.

Acknowledgments

This report benefits from comments on previous versions
by Ethan Blanton and Tom Callahan. We are also grate-
ful for fruitful discussions with Misha Rabinovich. This
work was funded in part by NSF grants CNS-0433702
and CNS-0831780.

References

[1] Alladin Inc eToken Strong Authen-
tication and password management,
http://www.aladdin.com/etoken/default.aspx.

[2] Keychain Services Programming Guide.
http://developer.apple.com/documentation/

Security/Conceptual/keychainServConcepts/

01introduction/introduction.html.
[3] GOODIN, D. Wow players learn value of windows

updates. http://www.theregister.co.uk/2007/
04/10/wow\ hijackings/.

[4] K REBS, B. Avoid Windows Malware:
Bank on a Live CD, http://voices.

6

washingtonpost.com/securityfix/2009/10/

avoid windows malware bank on.html.
[5] K REBS, B. Fbi investigating theft of

$500,000 from ny schoo district, http:
//www.krebsonsecurity.com/2010/01/

fbi-investigating-theft-of-500000-from-ny-school-district/.
[6] K REBS, B. Story driven resume, my best work,

http://www.krebsonsecurity.com/2009/12/

story-driven-resume-my-best-work-2005-2009-3/.
[7] M UNCHU, L. Banking in silence,

http://www.symantec.com/connect/blogs/

banking-silence.
[8] OpenID.http://openid.net/.
[9] Openssh, http://www.openssh.com/.

[10] PIAZZALUNGA , U., SALVANESCHI , P., AND

COFFETTI, P. The Usability of Security Devices.
In Security and Usability. 2005, ch. 12.

[11] ROSS, B., JACKSON, C., MIYAKE , N., BONEH,
D., AND M ITCHELL , J. Stronger Password Au-
thentication Using Browser Extensions. InUsenix
Security Symposium(2005).

[12] RSA Alert: New Universal Man-in-the-Middle
Phishing Kit Discovered. http://www.rsa.com/
press\ release.aspx?id=7667.

[13] The RSA SecurID. http://www.rsa.com/node.
aspx?id=1156.

[14] ST Microsystems STR7 ARM 32 bit Mi-
crocontrollers. http://www.st.com/mcu/

inchtml-pages-str7.html.
[15] T. DIERKS, E. R. The Transport Layer Security

(TLS) Protocol Version 1.1, Apr. 2006. RFC 4346.
[16] WEIGOLD, T., KRAMP, T., HERMANN, R., HOR-

ING, F., BUHLER, P., AND BAENTSCH, M. The
zurich trusted information channel - an efficient
defense against man-in-the-middle and malicious
software attacks. InTRUST 2008(2008).

[17] Delta-Sigma Modulation.http://en.wikipedia.
org/wiki/Delta-sigma\ modulation.

[18] Wikipedia, SMS banking,http://en.wikipedia.
org/wiki/SMS banking.

7

	TR-09-009 cover
	TR-09-009 no cover

