
Improving Performance of Internet
Protocols Over Wireless Networks

Mark Allman
ICSI Center for Internet Research

mallman@icir.org

Kent State University
November 5, 2003

"Here come Johnny with the power and the glory; Backbeat the talkin’ blues"

 Acknowledgments

 Collaborators

 Wesley Eddy (Ohio Univ.)

 Shawn Ostermann (Ohio Univ.)

 Support

 BBN Technologies

 NASA Glenn Research Center

 Allman 2

 Outline

 Background

 The problem

 Previously tried mitigations

 New technique: CETEN

 Preliminary evaluation

 Future work

 Summary

 Hopefully there is a little something in here for everyone:

 theory, practice, math, measurements, simulations, plots,
architecture, color pictures & hyperbole

 Please ask questions as they come up.

 Allman 3

 Background

 The transport layer of the network stack is charged with delivering
data between applications on end systems.

 TCP is the most heavily used transport protocol on the Internet.

 Other transports follow TCP’s basic controls and so we expect
our work to cover them as well (e.g., SCTP).

 TCP happens to also provide reliable in-order delivery of data
bytes.

 TCP is a sliding window protocol that originally used a static sized
window so the receiver could control its resources.

 Allman 4

 Background (cont.)

 TCP worked well until the mid-80s when the Internet suffered from
congestion collapse.

 The state when the network is highly utilized carrying a ton of
traffic, but very little useful work is getting accomplished.

 Van Jacobson added a set of congestion control and avoidance
techniques to TCP to combat congestion collapse.

 The key observation is that packet loss is a pretty good implicit
signal that congestion is occurring somewhere in the network path.

 Allman 5

 Background (cont.)

TRAFFIC

ROUTER

 Allman 6

 Background (cont.)

 The solution: when signals of congestion arrive (packet loss, or
later explicit signals of congestion) TCP reduces the sending rate
(by half).

 In the absence of a congestion signal TCP increases the sending
rate (linearly) in an effort to detect newly available capacity.

 Addative Increase Multiplicative Decrease (AIMD)

 We control the sending rate with a congestion window.

 Allman 7

 Background (cont.)

 Steady state TCP:

W/2

W

losslosslossloss

C
on

ge
st

io
n

W
in

do
w

Time

 Allman 8

 Outline

 Background

 The problem

 Previously tried mitigations

 New technique: CETEN

 Preliminary evaluation

 Future work

 Summary

 Allman 9

 Problems with CC

 What could be wrong with TCP’s AIMD-based congestion control?

 well ...

 The premise of Jacobson’s work is that nearly all packet loss is
caused by resource contention in routers.

 Which was true.

 And, is still likely true.

 But, not universally true.

 e.g., what if your connection is via RF?

 e.g., what if you happen to sit behind lousy hardware (see
Stone/Partridge, SIGCOMM 2000)?

 Allman 10

 Problems with CC (cont.)

 If a TCP connection experiences non-negligible amounts of loss
that are not congestion-related then the performance of the
connection will suffer.

 E.g., just because a bird flew in front of your antenna does not
mean that there is any reason for TCP to reduce the sending rate.

 Fundemental Problem: TCP has no way to derive the cause of a
packet loss.

 Allman 11

 Problems with CC (cont.)

 Steady state with non-congestion-loss:

W/2

W

congcongcorrcongcong

C
on

ge
st

io
n

W
in

do
w

Time

 Allman 12

 TCP Model

 An analytical model of TCP performance has been developed:

R =
MSS

RTT ·

√

2bp

3
+

(

RTO·

√

3bp

8
·p·(1+32p2)

)

 Developed by Mathis (CCR 1997), Padhye (SIGCOMM 1998), et.
al.

 There are a few variants, but all have the same basic form.

 Allman 13

 TCP Model (cont.)

 For our purposes the model can be distilled to:

 R ∝
1
√

p

 This makes sense because the goal of congestion control is to
avoid congestion collapse by adapting the sending rate.

 So, as the loss rate increases the sending rate decreases.

 Allman 14

 TCP Model (cont.)

 Model TCP performance:

 1000

 10000

 100000

 0.001 0.01 0.1

T
hr

ou
gh

pu
t (

B
/s

)

Loss Rate

RTT = 0.5 sec; MSS = 1460 bytes

 Allman 15

 TCP Model (cont.)

 But, p is a combination of congestion-based loss (c) and
corruption-based loss (e):

 p = c + e

 Ideally we’d like to change TCP’s congestion response function:

 R ∝
1
√

p
⇒ R ∝

1
√

c

 Allman 16

 TCP Model (cont.)

 Ideal TCP performance:

 1000

 10000

 100000

 0.001 0.01 0.1

T
hr

ou
gh

pu
t (

B
/s

)

Loss Rate

RTT = 0.5 sec; MSS = 1460 bytes; e/p = 0.75

Stock Response
Ideal Response

 Allman 17

 Outline

 Background

 The problem

 Previously tried mitigations

 New technique: CETEN

 Preliminary evaluation

 Future work

 Summary

 Allman 18

 Previous Work

 The literature is filled with potential solutions to the performance
problems caused by non-congestion based loss.

 Three general classes:

 Notification schemes

 Local repair

 Connection splitting

 Breaks the end-to-end nature of TCP

 Omitting from discussion today

 Allman 19

 Notification Schemes

 When a packet is detected as corrupted by the data-link layer a
notification is sent to one of the endpoints of the connection.

 What if the addresses are corrupted?

 What if the addresses are encrypted?

R2SRC DSTR1

 Allman 20

 Local Repair

 Each link is responsible for presenting a "clean" (error free)
transmission path

 ARQ (layer 2), snooping (layer 4)

 FEC (layer 2)

 Potential problems:

 Requires time or bandwidth

 Allman 21

 Local Repair (cont.)

 ARQ:

R2SRC DSTR1

 FEC:

 R2SRC DSTR1

 Allman 22

 Outline

 Background

 The problem

 Previously tried mitigations

 New technique: CETEN

 Preliminary evaluation

 Future work

 Summary

 Allman 23

 CETEN

 Cumulative Explicit Transport Error Notification

 Originally outlined by Krishnan, Sterbenz, Partridge, Allman

 BBN tech report

 Refined by Eddy, Ostermann, Allman

 In progress

 If TCP can obtain two of p, c or e we have the whole story about
losses and can form a more intelligent congestion response.

 Surprisingly, the TCP endpoints actually have none of these
quantities.

 We estimate "p" at the sender

 We ask the network for "e"
 Allman 24

 Estimating "p"

 At first glance it looks easy to determine the total loss rate of a
TCP connection since it is reliable.

 I.e., just count the retransmits

 However, depending on TCP variant the retransmission
mechanism is fairly gross.

 We developed several algorithms for estimating the total loss rate
based on the number of retransmits and hints coming back from
the receiver as to which retransmits were not required.

 LEAST: Loss Estimation AlgorithmS for TCP

 Paper under submission.

 Allman 25

 Estimating "p" (cont.)

 LEAST experiments:

 2600+ transfers (5000 packets each)

 NIMI mesh (20-ish hosts)

 cap utility (Allman, IMW/2001)

 tracing on sender and receiver

 can accurately assess the actual loss rate

 also, estimate using LEAST on the sender

 Allman 26

 Estimating "p" (cont.)

 LEAST performance:

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-100 -50 0 50 100 150 200

C
D

F

Percent Error

LEAST
Retransmits

 Allman 27

 Estimating "e"

 No good way for the end hosts to determine why an intermediate
node dropped a packet.

 So, we involve the routers.

 Mechanism 1:

 The TCP sender polls the router (with a TTL-limited request) for
the current error rate on their connected link.

 Pros: no on-the-wire protocol changes

 Cons: extra network traffic, extra control messages for firewalls to
nuke, unreliable

 Allman 28

 Estimating "e" (cont.)

 Mechanism 2:

 The router probabilistically sends an "e"-report to the packet
source for a given random packet that is being forwarded.

 Pros: no on-the-wire protocol changes

 Cons: extra network traffic (but more controlled than mechanism
1), extra control messages, unreliable

 Allman 29

 Estimating "e" (cont.)

 Mechanism 3:

 A packet is tagged with a "corruption survival probability" header
field.

 Initialized to 1.0 by the sending TCP

 Updated by each router along the path by multiplying the value
in the packet with the probability of corruption survival on the
incoming link.

 When a packet arrives at the receiver the probability in the
packet represents the probability of corruption survival across
the entire path --- this probability is echoed to the TCP sender in
ACKs.

 Pros: no extra control traffic, more reliable

 Cons: we have to change (or extend) the network or transport
layer protocol

 Allman 30

 Estimating "e" (cont.)

 We chose mechanism 3.

 CETEN "e" collection example:

0.95
SRC DSTR1 R2

0.90

(1.0) (0.95) (0.855)

 Allman 31

 Adjusting the Response (1)

 On each loss event flip a coin weighted by e/p to determine
whether the congestion window is reduced or not.

 On average the long term reduction factor should be based on "c"
not "e"

 Denoted "CETEN-C"

 Allman 32

 Adjusting the Response (2)

 Rather than using a static multiplicative decrease factor (MDF) of
1/2 at the TCP sender a variable MDF is computed as:

 MDF =
1+(e

np
)k

2

 Where n and k are shaping and bounding parameters.

 Denoted "CETEN-A"

 Allman 33

 Adjusting the Response (2) (cont.)

 Example MDF parameter sets:

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

M
ul

tip
lic

at
iv

e
D

ec
re

as
e

Fa
ct

or

e/p

n=1, k=1
n=2, k=1
n=1, k=2

 Allman 34

 Deployment

 CETEN does not require ubiquitous deployment.

 Rather, CETEN is only needed on routers/base-stations where
there are non-negligible corruption rates.

 And, needed is an overstatement

 Allman 35

 Outline

 Background

 The problem

 Previously tried mitigations

 New technique: CETEN

 Preliminary evaluation

 Future work

 Summary

 Allman 36

 Preliminary Evaluation

 Implemented CETEN in the ns network simulator

 Dumbell topology:

 RTT of roughly 85 msec

 Bottleneck bandwidth of 5 Mbps

 Drop-tail routers with 150 packets worth of queueing capacity

 SACK TCP

 MSS = 1460 bytes

 with delayed ACKs

 Uniform loss model (!)

 Allman 37

 Single Flow Tests

 One end-to-end TCP flow

1000

10000

100000

1e+06

0.01 0.1

G
oo

dp
ut

 (
B

ps
)

Packet Corruption Rate

Capacity
CETEN_A
CETEN_C

Stock Sack

 Allman 38

 Single Flow Tests (cont.)

 CETEN-C is flawed in that it does not account for the change in the
loss probabilities caused by its congestion response

W/2

W

congcongcorrcongcong

C
on

ge
st

io
n

W
in

do
w

Time

 Allman 39

 Tests with Cross Traffic

 One TCP connection in each direction

 5 on/off CBR flows in each direction

 Mean on time: 2.5 seconds

 Mean off time: 10 seconds

 When on each flow sends at 1 Mbps (one-fifth of the bottleneck
bandwidth)

 Allman 40

 Tests with Cross Traffic (cont.)

 Results from congested network:

100

1000

10000

100000

1e+06

0.01 0.1

G
oo

dp
ut

 (
B

ps
)

Packet Corruption Rate

Capacity
CETEN_A
CETEN_C

Stock Sack

 Allman 41

 Fairness Experiments

 TCP (mostly) shares evenly across like flows

 Does CETEN?

 Experiment

 20 competing flows

 all of the same variant

 Metric: Jain’s fairness index

 Allman 42

 Fairness Experiments (cont.)

0.9

0.92

0.94

0.96

0.98

1

0.001 0.01 0.1 1

A
ve

ra
ge

 F
ai

rn
es

s
In

de
x

Packet Error Rate

CETEN_A
CETEN_C

Stock SACK

 Allman 43

 Results Summary

 Both versions of CETEN aid performance, with CETEN-A gaining
better performance than CETEN-C

 CETEN-A is a promising technique

 Offers nice performance benefits

 Offers good fairness properties

 But, CETEN is still is a heavy-weight mechanism

 Allman 44

 Outline

 Background

 The problem

 Previously tried mitigations

 New technique: CETEN

 Preliminary evaluation

 Future work

 Summary

 Allman 45

 Future Work

 While CETEN looks and sounds promising there are a whole raft of
practical issues that need to be solved.

 E.g., How do routers average corruption rates? Over what
timescales?

 E.g., Should the end host average the "e" reports?

 E.g., How often should the end host request an "e" report?

 E.g., Can routers manipulate packets to include "e" in an efficient
enough way? At what speeds?

 Allman 46

 Future Work (cont.)

 E.g., How friendly is CETEN?

 E.g., How do we encode these probabilities? Where?

 E.g., What does CETEN performance look like under a more
realistic corruption loss model?

 E.g., How do we prevent lying receivers from gaming the sender’s
congestion control for their own benefit?

 E.g., How do we prevent DoS attacks on routers that involve
making them spend more cycles on every packet than they
otherwise would?

 Allman 47

 Future Work (cont.)

 The bigger picture:
 How much information should the network be expected to provide

to the end hosts?

 e.g., for CETEN?
 e.g., for Quick Start?
 e.g., for XCP?

 e.g., ??? (queueing delay, reordering, etc.)

 When does the network become "too smart"?
 When does the amount of information requested by the end hosts

become too much of a burden?

 Or, does it?

 Allman 48

 Outline

 Background

 The problem

 Previously tried mitigations

 New technique: CETEN

 Preliminary evaluation

 Future work

 Summary

 Allman 49

 Summary

 CETEN is an interesting and potentially useful technique for
improving performance for a certain class of network traffic

 E.g., the increasing amount of wireless traffic

 There are many issues that still need to be worked out. This is still
very much research.

 (much grist for the grad student energy mill!)

 Allman 50

 More Information

 Me:
 mallman@icir.org
 http://www.icir.org/mallman/

 Project web page:
 http://www.icir.org/mallman/research/proj-eten.html

 Questions? Comments? Concerns?

 Allman 51

