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  Hopefully there is a little something in here for everyone:
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  Please ask questions as they come up.
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 Background
  

  The transport layer of the network stack is charged with delivering 
data between applications on end systems.

 
 
 

  TCP is the most heavily used transport protocol on the Internet.
 
 

    Other transports follow TCP’s basic controls and so we expect 
our work to cover them as well (e.g., SCTP).

 
 
 

  TCP happens to also provide reliable in-order delivery of data 
bytes.

 
 
 

  TCP is a sliding window protocol that originally used a static sized 
window so the receiver could control its resources.
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 Background (cont.)
  

  TCP worked well until the mid-80s when the Internet suffered from 
congestion collapse.

 
 

    The state when the network is highly utilized carrying a ton of 
traffic, but very little useful work is getting accomplished.

 
 
 

  Van Jacobson added a set of congestion control and avoidance 
techniques to TCP to combat congestion collapse.

 
 
 

  The key observation is that packet loss is a pretty good implicit 
signal that congestion is occurring somewhere in the network path.
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 Background (cont.)
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 Background (cont.)
  

  The solution: when signals of congestion arrive (packet loss, or 
later explicit signals of congestion) TCP reduces the sending rate 
(by half).

 
 
 

  In the absence of a congestion signal TCP increases the sending 
rate (linearly) in an effort to detect newly available capacity.

 
 
 

  Addative Increase Multiplicative Decrease (AIMD)
 
 
 

  We control the sending rate with a congestion window. 
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 Background (cont.)
  

  Steady state TCP:
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 Problems with CC
  

  What could be wrong with TCP’s AIMD-based congestion control?
 
 

    well ... 
 
 

  The premise of Jacobson’s work is that nearly all packet loss is 
caused by resource contention in routers.

 
 

    Which was true.
 
 

    And, is still likely true.
 
 
 

  But, not universally true.
 
 

    e.g., what if your connection is via RF?
 
 

    e.g., what if you happen to sit behind lousy hardware (see 
Stone/Partridge, SIGCOMM 2000)?
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 Problems with CC (cont.)
  

  If a TCP connection experiences non-negligible amounts of loss 
that are not congestion-related then the performance of the 
connection will suffer.

 
 
 

  E.g., just because a bird flew in front of your antenna does not 
mean that there is any reason for TCP to reduce the sending rate.

 
 
 

  Fundemental Problem: TCP has no way to derive the cause of a 
packet loss.
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 Problems with CC (cont.)
  

  Steady state with non-congestion-loss:
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 TCP Model
  

  An analytical model of TCP performance has been developed:
 
 

 

R =
MSS

RTT ·
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2bp
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  Developed by Mathis (CCR 1997), Padhye (SIGCOMM 1998), et. 
al.

 
 
 

  There are a few variants, but all have the same basic form.
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 TCP Model (cont.)
  

  For our purposes the model can be distilled to:
 

 R ∝
1
√

p
 

 
 

  This makes sense because the goal of congestion control is to 
avoid congestion collapse by adapting the sending rate.

 
 

    So, as the loss rate increases the sending rate decreases.
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 TCP Model (cont.)
  

  Model TCP performance:
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 TCP Model (cont.)
  

  But, p is a combination of congestion-based loss (c) and 
corruption-based loss (e):

 p = c + e
 
 
 
 

  Ideally we’d like to change TCP’s congestion response function:
 

 R ∝
1
√

p
⇒ R ∝

1
√

c
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 TCP Model (cont.)
  

  Ideal TCP performance:
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 Previous Work
  

  The literature is filled with potential solutions to the performance 
problems caused by non-congestion based loss.

 
 
 

  Three general classes:
 
 

    Notification schemes
 
 

    Local repair
 
 

    Connection splitting
 
 

      Breaks the end-to-end nature of TCP
 
 

      Omitting from discussion today
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 Notification Schemes
  

  When a packet is detected as corrupted by the data-link layer a 
notification is sent to one of the endpoints of the connection.

 
 

    What if the addresses are corrupted?
 
 

    What if the addresses are encrypted?
 
 

 

R2SRC DSTR1
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 Local Repair
  

  Each link is responsible for presenting a "clean" (error free) 
transmission path

 
 

    ARQ (layer 2), snooping (layer 4)
 
 

    FEC (layer 2)
 
 
 

  Potential problems:
 
 

    Requires time or bandwidth
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 Local Repair (cont.)
 

  ARQ: 

 

R2SRC DSTR1

 
 
 

  FEC: 

 R2SRC DSTR1
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 CETEN
  

  Cumulative Explicit Transport Error Notification
 
 

    Originally outlined by Krishnan, Sterbenz, Partridge, Allman
 
 

      BBN tech report
 
 

    Refined by Eddy, Ostermann, Allman
 
 

      In progress
 
 
 

  If TCP can obtain two of p, c or e we have the whole story about 
losses and can form a more intelligent congestion response.

 
 

    Surprisingly, the TCP endpoints actually have none of these 
quantities.

 
 

      We estimate "p" at the sender
 
 

      We ask the network for "e"
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 Estimating "p"
  

  At first glance it looks easy to determine the total loss rate of a 
TCP connection since it is reliable.

 
 

    I.e., just count the retransmits
 
 
 

  However, depending on TCP variant the retransmission 
mechanism is fairly gross.

 
 
 

  We developed several algorithms for estimating the total loss rate 
based on the number of retransmits and hints coming back from 
the receiver as to which retransmits were not required.

 
 

    LEAST: Loss Estimation AlgorithmS for TCP
 
 

    Paper under submission.
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 Estimating "p" (cont.)
  

  LEAST experiments:
 
 

    2600+ transfers (5000 packets each)
 
 

    NIMI mesh (20-ish hosts)
 
 

    cap utility (Allman, IMW/2001)
 
 

    tracing on sender and receiver
 
 

      can accurately assess the actual loss rate
 
 

      also, estimate using LEAST on the sender
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 Estimating "p" (cont.)
  

  LEAST performance:
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 Estimating "e"
  

  No good way for the end hosts to determine why an intermediate 
node dropped a packet.

 
 
 

  So, we involve the routers. 
 
 

  Mechanism 1:
 
 

    The TCP sender polls the router (with a TTL-limited request) for 
the current error rate on their connected link.

 
 

    Pros: no on-the-wire protocol changes
 
 

    Cons: extra network traffic, extra control messages for firewalls to 
nuke, unreliable
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 Estimating "e" (cont.)
  

  Mechanism 2:
 
 

    The router probabilistically sends an "e"-report to the packet 
source for a given random packet that is being forwarded.

 
 

    Pros: no on-the-wire protocol changes
 
 

    Cons: extra network traffic (but more controlled than mechanism 
1), extra control messages, unreliable
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 Estimating "e" (cont.)
  

  Mechanism 3:
 

    A packet is tagged with a "corruption survival probability" header 
field.

 

      Initialized to 1.0 by the sending TCP
 

      Updated by each router along the path by multiplying the value 
in the packet with the probability of corruption survival on the 
incoming link.

 

      When a packet arrives at the receiver the probability in the 
packet represents the probability of corruption survival across 
the entire path --- this probability is echoed to the TCP sender in 
ACKs.

 

    Pros: no extra control traffic, more reliable
 

    Cons: we have to change (or extend) the network or transport 
layer protocol
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 Estimating "e" (cont.)
  

  We chose mechanism 3. 
 
 

  CETEN "e" collection example:
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 Adjusting the Response (1)
  

  On each loss event flip a coin weighted by e/p to determine 
whether the congestion window is reduced or not.

 
 
 

  On average the long term reduction factor should be based on "c" 
not "e"

 
 
 

  Denoted "CETEN-C"
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 Adjusting the Response (2)
  

  Rather than using a static multiplicative decrease factor (MDF) of 
1/2 at the TCP sender a variable MDF is computed as:

 

 MDF =
1+( e

np
)k

2 
 
 

  Where n and k are shaping and bounding parameters.
 
 
 

  Denoted "CETEN-A"
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 Adjusting the Response (2) (cont.)
  

  Example MDF parameter sets:
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 Deployment
  

  CETEN does not require ubiquitous deployment.
 
 
 

  Rather, CETEN is only needed on routers/base-stations where 
there are non-negligible corruption rates.

 
 

    And, needed is an overstatement
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 Preliminary Evaluation
  

  Implemented CETEN in the ns network simulator
 
 

  Dumbell topology:
 

    RTT of roughly 85 msec
 

    Bottleneck bandwidth of 5 Mbps
 

    Drop-tail routers with 150 packets worth of queueing capacity
 
 

  SACK TCP
 

    MSS = 1460 bytes
 

    with delayed ACKs
 
 

  Uniform loss model (!)
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 Single Flow Tests
  

  One end-to-end TCP flow 
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 Single Flow Tests (cont.)
  

  CETEN-C is flawed in that it does not account for the change in the 
loss probabilities caused by its congestion response
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 Tests with Cross Traffic
  

  One TCP connection in each direction
 
 

  5 on/off CBR flows in each direction
 
 

    Mean on time: 2.5 seconds
 
 

    Mean off time: 10 seconds
 
 

    When on each flow sends at 1 Mbps (one-fifth of the bottleneck 
bandwidth)
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 Tests with Cross Traffic (cont.)
  

  Results from congested network:
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 Fairness Experiments
  

  TCP (mostly) shares evenly across like flows
 
 
 

  Does CETEN? 
 
 

  Experiment
 
 

    20 competing flows
 
 

      all of the same variant
 
 

    Metric: Jain’s fairness index
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 Fairness Experiments (cont.)
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 Results Summary
  

  Both versions of CETEN aid performance, with CETEN-A gaining 
better performance than CETEN-C

 
 
 

  CETEN-A is a promising technique
 
 

    Offers nice performance benefits
 
 

    Offers good fairness properties
 
 
 

  But, CETEN is still is a heavy-weight mechanism
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 Future Work
  

  While CETEN looks and sounds promising there are a whole raft of 
practical issues that need to be solved.

 
 
 

  E.g., How do routers average corruption rates?  Over what 
timescales?

 
 
 

  E.g., Should the end host average the "e" reports?
 
 
 

  E.g., How often should the end host request an "e" report?
 
 
 

  E.g., Can routers manipulate packets to include "e" in an efficient 
enough way?  At what speeds?
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 Future Work (cont.)
  

  E.g., How friendly is CETEN?
 
 
 

  E.g., How do we encode these probabilities?  Where?
 
 
 

  E.g., What does CETEN performance look like under a more 
realistic corruption loss model?

 
 
 

  E.g., How do we prevent lying receivers from gaming the sender’s 
congestion control for their own benefit?

 
 
 

  E.g., How do we prevent DoS attacks on routers that involve 
making them spend more cycles on every packet than they 
otherwise would?
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 Future Work (cont.)
  

  The bigger picture:
    How much information should the network be expected to provide 

to the end hosts?
 

      e.g., for CETEN?
      e.g., for Quick Start?
      e.g., for XCP?
 

      e.g., ??? (queueing delay, reordering, etc.)
 

  When does the network become "too smart"?  
  When does the amount of information requested by the end hosts 

become too much of a burden?

  Or, does it?
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 Summary
  

  CETEN is an interesting and potentially useful technique for 
improving performance for a certain class of network traffic

 
 

    E.g., the increasing amount of wireless traffic
 
 
 

  There are many issues that still need to be worked out.  This is still 
very much research.

 
 

    (much grist for the grad student energy mill!)
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 More Information
  

  Me:
      mallman@icir.org
      http://www.icir.org/mallman/ 
 
 
 

  Project web page:
        http://www.icir.org/mallman/research/proj-eten.html 
 
 
 

  Questions?  Comments?  Concerns?
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