
CVS For Fun and Profit

Mark Allman
mallman@grc.nasa.gov

 Overview

 Why use version control?

 track software changes for development

 e.g., what did I actually change since yesterday when everything
worked fine?

 e.g., which version of the software did I use for my experiment
last month?

 track tools written for research

 e.g., simulation and analysis scripts

 track configs used in experiments

 e.g., router config files

 Allman January 2003 2

 Overview (cont.)

 track changes to papers

 who has seen what version?

 who hacked on section 3 last and what did they do?

 which version did I send to the conference and which was the
tech report?

 Allman January 2003 3

 Overview (cont.)

 We all have our ad-hoc systems for doing this

 keep a "working version" on a shared disk

 tuck away a tarball of today’s code in case I mess everything up
tomorrow

 burn "finished" versions to CD with meaningful names

 maybe keep a notes file

 etc.

 Allman January 2003 4

 Overview (cont.)

 CVS provides a framework for version control that is more formal
than our ad-hoc methods (yet not too formal as to be difficult to use)

 CVS also provides a way to share workspace with others and keep
track of what everyone is doing

 Allman January 2003 5

 CVS Versions and Interfaces

 CVS interfaces and versions exist for unix, macos and windows

 GUIs and text interfaces

 Hooks for editors

 Etc.

 All my examples are using the basic unix text interface

 Even if that doesn’t describe your situation the concepts and
terminology of the talk apply

 Allman January 2003 6

 CVS Version Numbers

 CVS keeps its own, internal version number for each file

 These version numbers do not have to correlate to higher level
version numbers that you wish to assign to a given snapshot of the
code, paper, etc.

 The CVS version numbers are basically a function of the number of
times a file has been updated in the repository

 (and, also, of the "branch" a file is on)

 Allman January 2003 7

 CVS Version Numbers (cont.)

 All files in the repository do not have to have the same version
number to keep track of things

 a .c file may have a CVS version number of 1.45 because it is
editted often

 meanwhile the corresponding .h file may have a CVS version
number of 1.7 because it is not editted much

 Allman January 2003 8

 Repositories and Modules

 CVS uses repositories of modules to track things

 The respository is the authoritative store for whatever is under
version control

 we generally keep one repository (or, at least a small number)

 Within each repository we keep modules

 e.g., one for each project

 Users do not edit things in the repository directly, but rather
through a defined interface of commands

 Allman January 2003 9

 Repositories and Modules (cont.)

Module2

Workstation
Repository

Module1

 Allman January 2003 10

 Creating a Repository

 guns% mkdir /home/mallman/tester

 guns% cvs -d /home/mallman/tester init

 guns% cd /home/mallman/tester

 guns% ls
 CVSROOT/

 guns% ls CVSROOT
 Emptydir [...]
 checkoutlist [...]
 checkoutlist,v [...]
 commitinfo [...]
 commitinfo,v [...]

 "You can look, but you better not touch"

 Allman January 2003 11

 Locating a Repository

 The "-d" argument to CVS is used to indicate which repository you
want to use

 "-d /full/path/to/repository"

 this indicates where the repository is in your local filesystem

 "-d hostname:/full/path/to/repository"

 this indicates the full path name of a repository on a remote
machine

 Typing "-d foo" all the time is tiresome. So, you can set the
"CVSROOT" environment variable to the argument you would give
to the -d option

 e.g., "export CVSROOT=/mycvsroot"

 Allman January 2003 12

 Accessing Remote Repositories

 Basically, use ssh

 There is a CVS server (a "pserver")

 insecure

 mostly used for anonymous CVS access

 To use ssh for CVS set the following environment variable:

 export CVS_RSH=ssh

 Allman January 2003 13

 Private Copies

 Since you cannot edit files in the repository directly we need
another copy of the files that you can touch (edit, add, delete, etc.).

 Making a private copy of a module:

 cvs checkout module_name

 cvs co module_name

 Allman January 2003 14

 Private Copies (cont.)

 Priv Copy

Repository

Module1

Module2

WorkstationLaptop Lab Box
Module1

Priv Copy

Module1

Priv Copy

Module2
Priv Copy

Module2

 Allman January 2003 15

 Private Copies (cont.)

 guns% cvs co cvs-talk
 U cvs-talk/Makefile
 U cvs-talk/cvs.mm

 guns% cd cvs-talk

 guns% ls
 CVS/ Makefile cvs.mm

 guns% ls CVS
 Entries Repository Root

 Allman January 2003 16

 Private Copies (cont.)

 You can edit the files in a private copy as you please

 But, stay away from the "CVS" subdirectories

 Also, if you’re in the cvs-talk directory you no longer have to use
"-d" because the information is stored in the "CVS" directory

 Allman January 2003 17

 Starting a Module

 You start with an initial directory of stuff. From there you "import" a
new module into the repository.

 Importing:

 cvs import module_name vendor release_tags

 But, "new-module" is not a private copy of the CVS repository

 You must checkout a copy from CVS to get all the meta-files, etc.

 Allman January 2003 18

 Starting a Module (cont.)

import

Laptop

Module1

Priv Copy

newproj

Workstation
Repository

Module1

newproj

 Allman January 2003 19

 Starting a Module (cont.)

newproj

Laptop

Module1

Priv Copy

Workstation
Repository

Module1

newprojimport

newproj
Priv Copy

newproj
Priv Copy

 Allman January 2003 20

 Starting a Module (cont.)

 guns% cd newproj

 guns% ls -1
 Makefile
 foo.c
 analysis.py

 guns% cvs import newproj mallman init
 [CALLS EDITOR]
 N newproj/Makefile
 N newproj/foo.c
 N newproj/analysis.py

 No conflicts created by this import

 Allman January 2003 21

 Starting a Module (cont.)

 guns% cd ..

 guns% rm -rf newproj

 guns% cvs co newproj
 cvs checkout: Updating newproj
 U newproj/Makefile
 U newproj/analysis.py
 U newproj/foo.c

 Allman January 2003 22

 Committing Your Changes

 Once you have changed a file in your private copy and are
satisfied that it is right, you need to commit the file to the repository

 Committing:

 cvs commit filename

 cvs commit

 You will be asked to enter a log message when committing

 Allman January 2003 23

 Committing Your Changes (cont.)

 lawyers% cvs co cvs-talk
 U cvs-talk/Makefile
 U cvs-talk/cvs.mm

 lawyers% cd cvs-talk

 lawyers% emacs cvs.mm

 lawyers% cvs commit
 [CALLS EDITOR]
 Checking in cvs.mm;
 /home/mallman/.cvsroot/cvs-talk/cvs.mm,v <-- cvs.mm
 new revision: 1.2; previous revision: 1.1
 done

 Allman January 2003 24

 Committing Your Changes (cont.)

 CVS: ----------------
 CVS: Enter Log. [...]
 CVS:
 CVS: Committing in .
 CVS:
 CVS: Modified Files:
 CVS: 	cvs.mm
 CVS: ----------------

 Allman January 2003 25

 Committing Your Changes (cont.)

 When do I commit files?

 wwwweeeellllllll

 Allman January 2003 26

 Updating Your Copy

 After checking out a module you often want to update the copy with
changes that have been made to the module in the repository:

 by a colleague

 by you from a different private copy of the module

 e.g., the private copy that lives on your laptop

 Updating a private copy:

 cvs update filename

 cvs update

 cvs up

 cvs up -d -R

 Allman January 2003 27

 Updating Your Copy (cont.)

 guns% cd cvs-talk
 guns% cvs up
 cvs server: Updating .
 P cvs.mm

 Allman January 2003 28

 Adding Files

 Sometimes (!) it is handy to be able to add things to the repository

 Adding files:

 cvs add filename

 cvs commit [filename]

 Adding directories:

 cvs add directory

 That is, you do not have to commit to make a directory addition

 Also, note that adding a directory does not add its contents

 Allman January 2003 29

 Adding Files (cont.)

 guns% mkdir figs
 guns% cvs add figs
 Directory /home/mallman/cvs-talk/figs added to the repository

 Allman January 2003 30

 Adding Files (cont.)

 guns% cd figs

 guns% xfig 1.fig

 guns% cvs add 1.fig
 cvs add: scheduling file ‘1.fig’ for addition
 cvs add: use ’cvs commit’ to add this file permanently

 guns% cvs commit
 [CALLS EDITOR]
 cvs commit: Examining .
 RCS file: /home/mallman/.cvsroot/cvs-talk/figs/1.fig,v
 done
 Checking in 1.fig;
 /home/mallman/.cvsroot/cvs-talk/figs/1.fig,v <-- 1.fig
 initial revision: 1.1
 done

 Allman January 2003 31

 Removing Files

 To remove a file from a repository you nuke the file in your private
copy, tell the repository you want to remove the file and then
commit.

 Removing file:

 nuke the file ("rm file")

 cvs remove file

 cvs commit

 Allman January 2003 32

 Removing Files (cont.)

 guns% cd cvs-talk/figs

 guns% rm 1.fig

 guns% cvs remove 1.fig
 cvs remove: scheduling ‘1.fig’ for removal
 cvs remove: use ’cvs commit’ to remove this file permanently

 guns% cvs commit
 [CALLS EDITOR]
 cvs commit: Examining .
 Removing 1.fig;
 /home/mallman/tester/foo/figs/1.fig,v <-- 1.fig
 new revision: delete; previous revision: 1.1
 done

 Allman January 2003 33

 Getting Status

 Sometimes you want to know the status of a file in your private
copy with respect to the repository

 Do I have an un-committed version of this file?

 Do I need an update for this file?

 Etc.

 Getting status:

 cvs status filename

 cvs status

 Allman January 2003 34

 Getting Status (cont.)

 guns% cvs status cvs.mm

===
 File: cvs.mm Status: Locally Modified

 Working revision: 1.4
 Repository revision: 1.4
/home/mallman/.cvsroot/cvs-talk/cvs.mm,v

 Sticky Tag: (none)
 Sticky Date: (none)
 Sticky Options: (none)

 Allman January 2003 35

 Getting More Status

 You can grab all the commit entries that people have written about
a particular file to get some version history.

 Version history:

 cvs log filename

 cvs log

 Allman January 2003 36

 Getting More Status (cont.)

 guns% cvs log cvs.mm

 RCS file: /home/mallman/.cvsroot/cvs-talk/cvs.mm,v
 Working file: cvs.mm
 head: 1.4
 [...]

 revision 1.4
 date: 2003/01/16 14:28:26; author: mallman; state: Exp; lines: +1 -0

 Added slides on adding and removing file from CVS.

 revision 1.3
 date: 2003/01/16 14:26:49; author: mallman; state: Exp; lines: +13
-3

 Added slides on updating private copies from the respository.

 Allman January 2003 37

 Finding Changes

 Often what you want to know is:

 what did I change that really hosed things up?

 what changed between this experiment and the last experiment?

 what did Bob change in the paper last night?

 Allman January 2003 38

 Finding Changes (cont.)

 Finding differences:

 cvs diff filename

 changes between your private copy and repository copy

 cvs diff -r x.y filename

 changes between your private copy and version x.y in the
repository

 cvs diff -r x.y -r a.b filename

 changes between versions x.y and a.b in the repository (without
taking your private copy into account)

 Allman January 2003 39

 Tagging

 It is often useful to tag all files in the repository under one name so
that you can get back to some known point later

 a particular release of software

 all code and configs used for some demo

 To tag:

 cvs tag tagname

 tagname cannot contain periods

 E.g.:

 cvs tag traffic_v_1-2-23

 Allman January 2003 40

 Tagging (cont.)

 Then you can:

 cvs co -r traffic_v_1-2-23 traffic

 cvs diff -r traffic_v_1-2-23

 Allman January 2003 41

 Binary Files

 A word about CVS and binary files...

 Allman January 2003 42

 Other Features

 There is lots more that CVS can do

 branching and merging

 watching, releasing, annotating

 history

 email notification for commits

 lots of interesting riffs on the commands we talked about

 etc.

 Allman January 2003 43

 Final Word

 Use CVS:

 it’s just good science

 it will save you time in the long run

 it will help collaboration

 If you don’t particularly like CVS specifically but want to use
version control there are lots of other packages that can help

 RCS

 BitKeeper

 see SourceForge

 Allman January 2003 44

 Pointers

 CVS Homepage:

 http://www.cvshome.org/

 Slides from this talk:

 http://roland.grc.nasa.gov/~mallman/talks/cvs.ps

 http://roland.grc.nasa.gov/~mallman/talks/cvs.pdf

 Principles of version control:

 http://www.perforce.com/perforce/bestpractices.html

 Allman January 2003 45

