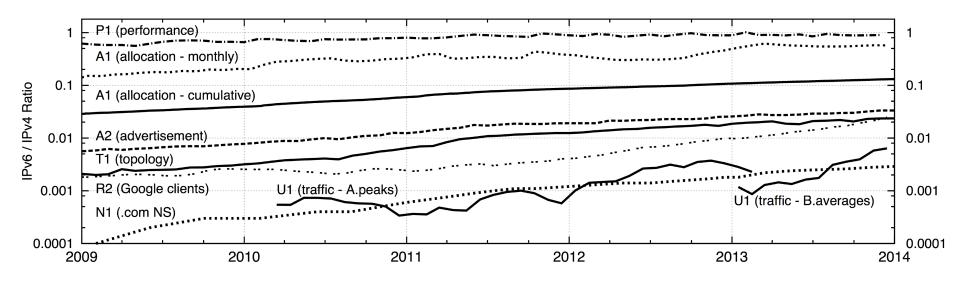


A Characterization of IPv6 Network Security Policy

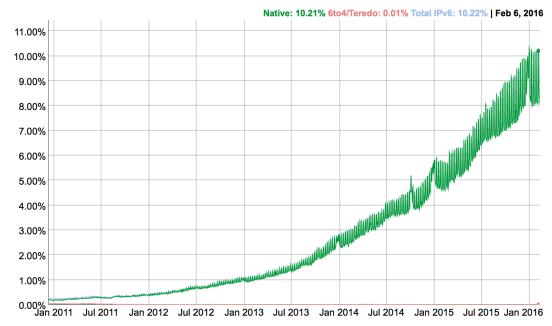
Mark Allman
International Computer Science Institute

MAPRG Meeting April 2016

"Hey [IETF] I'm calling all stations
Blowing down the wire tonight
I'm singing through these power lines
And I'm running on time and feeling alright"


Acknowledgments

- Collaborators:
 - Jakub (Jake) Czyz, U. Mich.
 - Matthew Luckie, CAIDA/U. Waikato
 - Michael Bailey, UIUC


Paper:

Jakub Czyz, Matthew Luckie, Mark Allman, Michael Bailey. Don't Forget to Lock the Back Door! A Characterization of IPv6 Network Security Policy. Network and Distributed System Security Symposium, February 2016. http://www.icir.org/mallman/pubs/CLAB16/

State of IPv6

IPv6 gaining traction

IPv6 Security

 IPv6 is not inherently more or less secure than IPv4

- IPv6 ecosystem is actually less secure
 - Lack of maturity in stacks, processes, tools, operator competency
 - In dual-stack world, IPv6 is a second attack path

IPv6 Security

"In new IPv6 deployments it has been common to see IPv6 traffic enabled but none of the typical access control mechanisms enabled for IPv6 device access."

— Chittimaneni, et al., Internet-Draft draft-ietf-opsec-v6

Overview

• We know policy discrepancies can happen

 We know via anecdote that policy discrepancies do happen

 We want to know the extent to which policy discrepancies do happen in the wild

Methodology

- I. Derive a list of dual-stack devices
- 2. Probe devices via IPv4 & IPv6
- 3. Determine fate of probes vs. network protocol utilized

Finding Dual-Stack Hosts

- Glib version:
 - Obtain lists of devices (names or IP addresses)
 - Leverage DNS to provide connective tissue between IPv4 & IPv6 addresses
 - Calibration phase to enhance confidence in connective tissue

Full details of methodology in the paper

Dual-Stack Devices

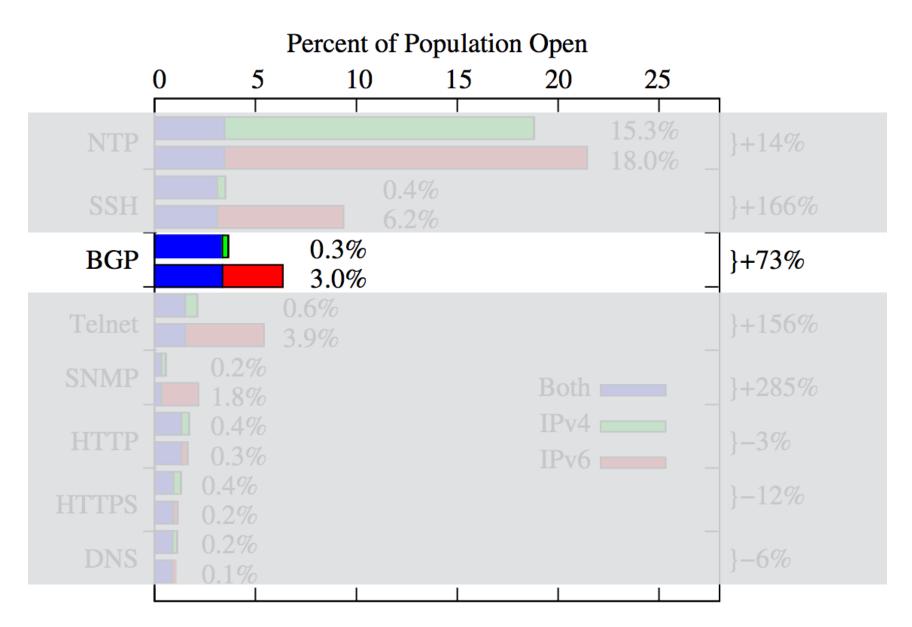
- Device lists:
 - 25K dual-stack routers
 - 520K dual-stack servers

 Note: we verified that all identified dual-stack hosts speak both IPv4 and IPv6

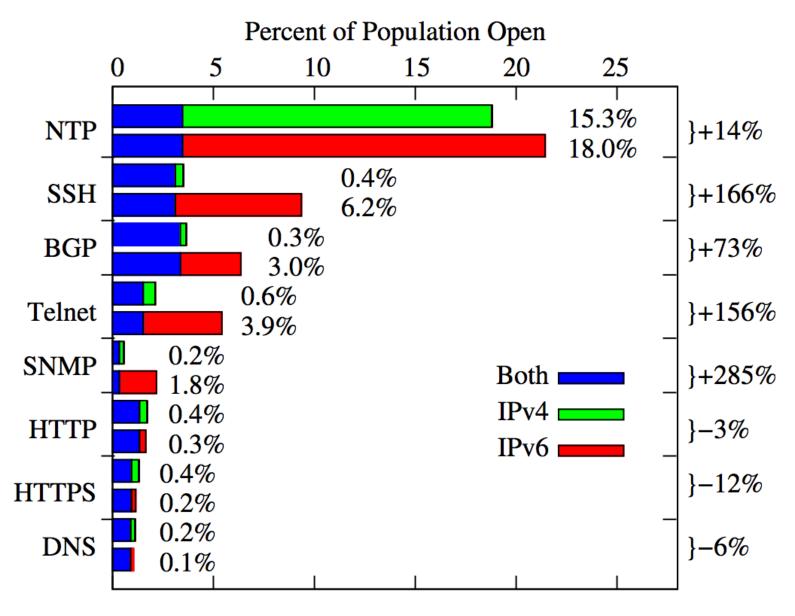
Probing

- Probe each host via
 IPv4 and IPv6
- Use scamper to send:
 - basic probes
 - traceroute-style probes

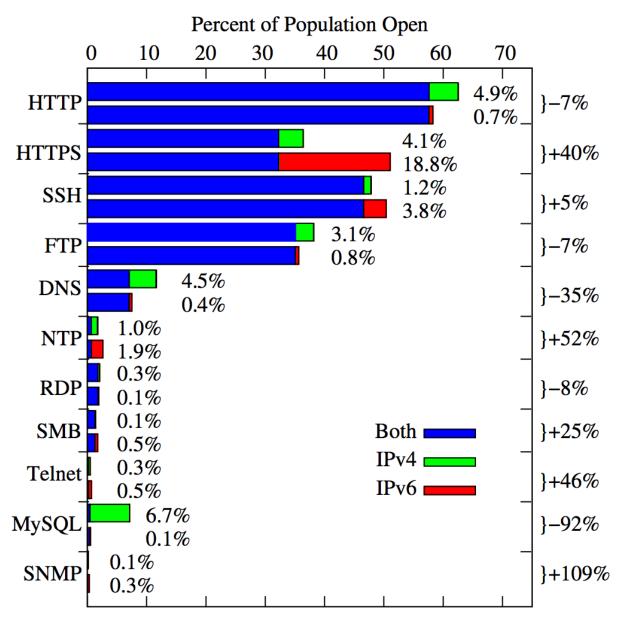
	Router	Server
ICMP Echo	✓	✓
FTP		✓
SSH	✓	✓
Telnet	✓	✓
HTTP	✓	✓
BGP	✓	
HTTPS	✓	✓
SMB		✓
MySQL		✓
RDP		✓
DNS	✓	✓
NTP	✓	✓
SNMPv2	✓	✓


Judgment

 Crucial assumption: probes with different network protocols and different fates indicate a policy difference

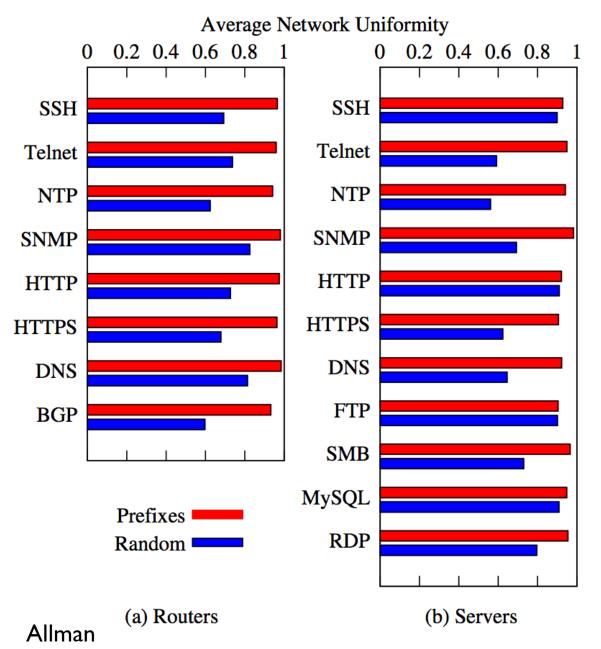

 E.g., an unsuccessful IPv4 probe and a successful IPv6 probe indicates a policy difference

Small scale independent validation, stay tuned


Router Results

Router Results

Server Openness



Intra-Network Uniformity

 Want to know how uniform policies are within networks

- For each routed prefix and each application:
 - calculate the fraction of hosts with the most popular policy (v4-only, v6-only or both)

Intra-Network Uniformity

Policy settings are generally systematic within network boundaries.

Policy Enforcement

- How:
 - Passive: probe is silently discarded
 - Active: probe triggers an error (TCP RST, ICMP unreachable, etc.)
- Where:
 - Target: destination of probe
 - Other: some hop on path prior to destination

Policy Enforcement

	Router (\mathcal{R}_T)		
Mode	Mean IPv4	Mean IPv6	
Open	4.17	6.04	
Passive:Target	43.50	27.15	
Passive:Other	10.12	15.82	
Active:Target	30.93	36.14	
Active:Other	3.55	6.94	
		^	

- IPv6 uses more active blocking than IPv4
- Target host responsible for more blocking in IPv4

Policy Enforcement

	Serve	(\mathcal{S}_T)
Mode	Mean IPv4	Mean IPv6
Open	18.57	18.89
Passive:Target	36.06	31.17
Passive:Other	16.31	14.20
Active:Target	22.82	27.61
Active:Other	2.09	2.79
		A

- IPv6 uses more active blocking
- Policy enforcement equally shared between target and other

Notification & Validation

- Wanted to know if our findings were ...
 - ... correct?
 - ... intentional?

Notification & Validation

Operator	Host-App Pairs w/Only IPv6 Open	Response
Global CDN 1	3	✓
Tier1 ISP 1	498	
Global Transit Pro. 1	201	~
Large Hosting Pro. 1	≈800	
Large University 1	5	~
Large University 2	6	~
Large University 3	989	~
National ISP 1	4757	~
National ISP 2	89	
Research/Ed. ISP 1	1	~
Research/Ed. ISP 2	523	~
Research/Ed. ISP 3	77	~
Research/Ed. ISP 4	17	~
Small Hosting Pro. 1	17	~
Small ISP 1	12	
Small Transit Pro. 1	2	~

- 16 operators contacted, 12 responded
 - All confirmed our results
 - All indicated different policy was unintentional

Final Bits

- Unintentionally open services are a symptom of a less mature IPv6 ecosystem
 - So, be diligent beyond ACLs

- Our test modules are available as part of scamper
 - So, test your own networks/devices

Questions? Comments?

Mark Allman, mallman@icir.org http://www.icir.org/mallman/ @mallman_icsi

References

 NDSS paper: http://www.icir.org/mallman/pubs/CLAB16/

- Google's IPv6 Statistics: https://www.google.com/intl/en/ipv6/statistics.html
- SIGCOMM paper on IPv6 adoption: http://www.icir.org/mallman/pubs/CAZ+14/