

DNS Record Injection Vulnerabilities in Home Routers Kyle Schomp⁺, Tom Callahan⁺, Michael Rabinovich⁺, Mark

†Case Western Reserve University

‡International Computer Science Institute

Attacks targeting DNS resolvers

- Various attempts to poison DNS resolver caches
 - Bailiwick violations
 - Kaminsky vulnerability
- Tempting targets because they handle a large number of clients
 - One successful attack \rightarrow many victims
- Mitigations for these problems
 - Bailiwick rules nearly universally applied
 - Transaction ID randomization, ephemeral port randomization, 0x20 encoding
 - 16% of resolvers use static ephemeral port Kaminsky vulnerable

Open resolvers: a (still) growing problem

- openresolverproject.org indicates there are 27 million open resolvers on the Internet!
- Researchers found just 15 million open resolvers in 2008
- Almost doubling in last 6 years
 - (Recent downturn)

Leonard, Derek, and Dmitri Loguinov. "Demystifying service discovery: implementing an internet-wide scanner." *Proceedings of the 10th ACM SIGCOMM conference on Internet measurement*. ACM, 2010.

• But what are open resolvers?

Many open resolvers are home routers

The evidence	% of Open Resolvers
RomPager embedded web server on port 80	24%
Basic HTTP auth realm header (``3068 DSL-2641R'')	24%
BPL listed by Spamhaus	51%
BPL listed by ISP	17%
DNS response from wrong port (self-NATing)	48%
Total	78%
 Many open resolvers have names from the Alex 1,000 in cache 	a top From a sample of 1 million open resolvers

• Used low-end embedded device in residential location

• Accept a request from a device

- Accept a request from a device
- Forward the request to an upstream resolver

- Accept a request from a device
- Forward the request to an upstream resolver
- Cache the response

- Accept a request from a device
- Forward the request to an upstream resolver
- Cache the response
- Return the response to the device

Device

What could go wrong?

- ... besides home routers acting as open resolvers not a good thing
- Serious vulnerabilities have previously been discovered in resolvers operated by major DNS providers
- Might home routers have DNS vulnerabilities as well?

Preplay vulnerability

Schomp, Kyle, and Tom Callahan, and Michael Rabinovich, and Mark Allman. "Assessing DNS vulnerability to record injection." PAM 2014.

- Many home routers simply do not validate DNS responses
 - Responses accepted from *any* source IP address / port
 - Ephemeral port number not validated
 - Transaction ID either unmodified in forwarding or not validated
- No guessing involved in the attacks at all!
- In open resolver samples, 7-9% have this vulnerability
 - Estimate 2-3 million boxes on the Internet are vulnerable

• Attacker sends request for domain name to poison

- Attacker sends request for domain name to poison
- Attacker immediately sends a response binding to A
 - (before response from shared resolver)

- Attacker sends request for domain name to poison
- Attacker immediately sends a response binding to A
 - (before response from shared resolver)
- The home router inserts the binding into its cache

Device

- Attacker sends request for domain name to poison
- Attacker immediately sends a response binding to A
 - (before response from shared resolver)
- The home router inserts the binding into its cache
- Client device subsequently requests domain name

- Attacker sends request for domain name to poison
- Attacker immediately sends a response binding to A
 - (before response from shared resolver)
- The home router inserts the binding into its cache
- Client device subsequently requests domain name
- Receives poison

But there's more...

- Preplay vulnerability doesn't require any guessing
- Another 7-10% of home routers are only protected by a variable port number
- Guessing the correct port number from [0,65535] is hard
- But the selected port number may not be random

Why poison home router caches?

Attack on major DNS resolver

- Complex attack
- Affects potentially thousands
- Detectable via IDS
- Poison whole domains

Attack on home router

- Trivial to launch
- Single household affected
- No one's watching
- Poison single query string

Home routers putting us at risk

- Record injection not the only reason home routers are dangerous
- Reflection / DNS amplification attacks because they are open
- Indirect attacks on closed portions of the resolver infrastructure

What can we do about this?

- Home router software doesn't get updated
 - Wait a few years for hardware update
 - Future models could have an automatic update feature
 - Vendors can push security updates
- UDP/53 blocking to residential IP address ranges
 - Nearly all home routers only accept DNS requests on port 53
 - Blocking would be effective
 - *Some* use port 53 as the ephemeral port
 - Care must be taken not to block their legitimate traffic
 - Make exceptions for popular public DNS resolvers (i.e., 8.8.8.8)
 - Might block other legitimate client traffic

Thank you! Questions? Kyle Schomp – kgs7@case.edu