

Towards a User-Centric Internet Architecture

Mark Allman International Computer Science Institute

Youngstown State University September 2010

"Seven hundred tons of metal a day and sir you tell me the world's changed, Once I made you rich enough, rich enough to forget my name"

Towards a User-Centric Internet Architecture

Mark Allman International Computer Science Institute

Youngstown State University September 2010

"Seven hundred tons of metal a day and sir you tell me the world's changed, Once I made you rich enough, rich enough to forget my name"

Collaborators

- Aditya Akella
- Tom Callahan
- Kevin Ditraglia
- Fredrick Douglas
- Andrei Gurtov
- Joakim Koskela
- Benjamin Kuperman

- Chitra Muthukrishnan
- Pete Naegele
- Vern Paxson
- Michael Rabinovich
- Mitch Rackovan
- Michael Slattery
- Nicholas Weaver

What is "Architecture"?

- Abstractions
 - e.g., layering
- Foundational Services
 - e.g., Domain Name System (DNS)
- Organizing Principles
 - e.g., the end-to-end principle
 - e.g., engineering for tussle

Abstractions

- General computer science principle of complexity hiding
- Applied broadly within the discipline
- Network are no different
 - e.g., protocol layering
 - e.g., AS numbers for routing

Layering

Application
Presentation
Session
Transport
Network
Data Link
Physical

Layering (cont.)

Layering (cont.)

Religion
Politics
Money
Application
Transport
Network
Data Link
Physical

Foundational Services

- Protocol stack isn't enough
- Need additional elements to add flexibility, functionality, scalability, etc.
 - e.g., DNS to name hosts
 - e.g., DHCP for host configuration
 - e.g., NIS/LDAP for configuration information

DNS

- Maps human understandable hierarchical names to IP addresses
 - e.g., www.icir.org == 192.150.187.12

DNS (cont.)

Application
Transport
Network
Data Link
Physical

DNS (cont.)

Organizing Principles

 In addition to specific aspects of technology we develop for networked systems we also need overarching ways to think

- E.g., the end-to-end principle
- E.g., engineering for tussle

End-to-End Principle

- Keep the middle of the network simple
- Put the "smarts" at the edges

Allows for innovation to be built on top of simple and ubiquitous core

Hop-By-Hop Example

End-to-End Example

Reconciling Interests

- Observation: different entities in the network have different interests
- Observation: no one-size-fits-all way to address competing interests
- Conclusion: engineer the system to deal with competing interests

Current Architecture

- Current architecture has obviously been useful
 - formed the foundation of a system that has scaled in terms of hosts, people and content

- Is the current architecture enough?
- Can / should we evolve it to make the Internet "better" in some way?

Trends

- I. Users generate the content
- 2. Users access the Internet from a variety of computing platforms
- 3. Breadth of applications is every increasing
- 4. Users and service providers (broadly defined) have inconsistent goals

Evolving Architecture

- Trends are very user focused
- Current architecture is very host focused

• Can we evolve the *Internet architecture* to include *users* as first-class entities across services, protocols, etc.?

Our Approach

• We have a multi-pronged approach to adapting the architecture to be *user-centric*

- Establishing identity
- Meta-information storage
 - e.g., naming
- Transparent networking

Establishing Identity

• Crucial problem: how do we identify people and validate transactions?

• Employ usernames, passwords, crypto (oh my!)

- Well, yes, but what about host compromise or man-in-the-middle snooping?
 - easy to lose the "keys to the kingdom"

Path Vulnerabilities

New "Paths"

• Objective: secure identity and transactions regardless of the state of the path

- Two key constructs:
 - trusted path to the user
 - independent path to the user

Trusted Path

- USB fob
 - holds users' crypto material
 - fits on users' physical keyrings
 - has input/output
 - speaker + button (say)
 - limited functionality
 - i.e., a few crytpo functions
 - (reduced attack surface)

Trusted Path (cont.)

Trusted Path (cont.)

- Any alterations of the audio are detectable
- Only the fob can authorize the transaction
- The only thing the network path can do is prevent communication

Trusted Path (cont.)

- We have an initial design
 - generic API to work across services
 - bill of materials: \$30
 - (likely lower now)

Independent Path

 Rather than try to secure the in-band communication we rely on a second independent path to relay out-of-band confirmations

Ind. Path (cont.)

Meta-Information

- Observation: lots of meta-information floating around
 - names (URLs, email addresses, etc.)
 - social graph
 - configuration information
 - application state

- Storage and management are ad-hoc
 - bookmarks, address books, rc files, etc.

MISS

- We developed the Meta-Information Storage System (MISS) as a service to coherently store meta-information
 - each user gets a space to populate with their information
 - flat namespace
 - outside specific hosts and applications

• Goal: provide a foundation to both deal with the mess and enable new functionality

MISS Structure

Naming

Naming network resources and services is a big mess

Naming Problems

- Problem #1: names are obtuse
- Problem #2: names are hard to share

http://www.flickr.com/photo_zoom.gne?id=1131208946&size=o&context=photostream

Naming Problems (cont.)

• Problem #3: names are globally unique, but ambiguous to people

- What is ou.edu?
 - Ohio University ??
 - University of Oklahoma ??

Naming Problems (cont.)

 Problem #4: names are intolerant of location change

mallman@cs.ohiou.edu ma137591@ohiou.edu

mallman@grc.nasa.gov

mallman@icir.org

mark.allman@case.edu

Naming Problems (cont.)

- Problem #5: naming is under nobody's control
 - service providers play a part
 - e.g., "www.blogspot.com"
 - content providers play a part
 - e.g., "MyGreatVacationPictures.html"
 - consumers play a part
 - e.g., "Joe's Blog" in the bookmarks list

A Naming Layer

- Perhaps what we need is a new over-arching namespace
 - just an abstraction to existing namespaces
- A "personal namespace" that can be contained in MISS

A Naming Layer (cont.)

- Give users' a way to name their own resources
 - independent of resource/service location
 - with context sensitive names
 - public-vs-private scoping defined by the user

Name Types

- Simple names
 - e.g., "calendar = webcal://cal.mallman...."
 - e.g., "email = mallman@icir.org"
 - e.g., "aim = myAlMhandle"
- Pointers to other namespaces
 - e.g., "Joe = NID:7a6b623df1"

Example

Example (cont.)

- Wes can use:
 - Mark:vacation-pix
 - Mark:web
- Mark can use:
 - Dad:blog

Implementation

- Backend MISS has been built
- Plugins to implement the naming scheme have been developed for Thunderbird and Firefox

 Open question: What would you do with a MISS-like service?

User-v-Network

- The Internet architecture calls for the network to be application-agnostic, but that is not operational reality in modern networks
- Some decry such *non-neutral* treatment
- However, these practices are reality and rooted in compelling business, economic and civic concerns
 - so, the tension is likely here to stay
- Represents a tussle-space we must accommodate and not resist

Traffic Discrimination

- Typical scenario:
 - service provider takes issue with some use of the network, buys or implements some way to find the offending traffic and limits it in some way (dropping, throttling, etc.)
 - users (/applications) take issue with discrimination by the network and encode, layer and generally obfuscate their traffic to circumvent detection
- Rinse and repeat
 - standard arms race

Transparency

• We don't need (or even want) a *neutral* network we need a *transparent* network

- I.e., users / applications can understand network policies
- I.e., the network can understand users' / applications' intentions

Warning

• This is a thought experiment

Typing

- Move away from network handling opaque blobs of bits
- Rather, the type of the bits is also exposed
 - in terms of the semantics of how those bits will be used
- Extensive set of types
 - from atomic (IP addresses) to higher-level constructs (URLs) to aggregated objects (HTTP responses)
- Exhaustive typing
 - everything is typed without exception

Dialog

 Provides a way for users and applications to communicate with the network to understand policies and adapt to particular requirements

- E.g., email
 - a user may wish to keep an email transaction private
 - an institution may require email be exposed for virus scanning

Choice

• Dialog leads to choice

- E.g., users / applications can decide to expose the required information
- E.g., users / applications can decide to use a different path (or virtual path)

Verification

 Problem: how do we know the payloads will be used as advertised?

- In the limit, this is unknowable
- We can gain confidence by using *attesters* to verify types
 - e.g., TPMs
 - e.g., TTPs

"Realization"

- XML blobs to encode messages
- Crypto to scope actors who can view a message

• But, yeah, there are issues

Other Ideas

- Opportunistic personas
 - better security through crypto + track records
- Better information sharing for energy-sensitive networking
- Purpose-built social networks
 - e.g., for use during emergencies

Next Steps

- Integrating the social graph across protocols, services, etc.
- User-directed protocols ("hooks")
- Networking with *context*

• Can and should we evolve the network architecture to be more user-centric?

Questions? Comments?

Mark Allman

mallman@icir.org http://www.icir.org/mallman/

"... and I believe in the promised land"

References

- Mark Allman, Christian Kreibich, Vern Paxson, Robin Sommer, Nicholas Weaver. The Strengths of Weaker Identities: Opportunistic Personas. USENIX Workshop on Hot Topics in Security (HotSec), August 2007.
- Mark Allman, Ken Christensen, Bruce Nordman, Vern Paxson. Enabling an Energy-Efficient Future Internet Through Selectively Connected End Systems. ACM SIGCOMM Workshop on Hot Topics in Networks (HotNets), November 2007.
- Mark Allman. Personal Namespaces. ACM SIGCOMM Workshop on Hot Topics in Networks (HotNets), November 2007.
- Joakim Koskela, Nicholas Weaver, Andrei Gurtov, Mark Allman. Securing Web Content. ACM CoNext Workshop on ReArchitecting the Internet (ReArch), December 2009.
- Nicholas Weaver, Mark Allman. *On Constructing a Trusted Path to the User*. Technical Report 09-009, International Computer Science Institute, December 2009.
- Tom Callahan, Mark Allman, Michael Rabinovich, Frederick Douglas. On Grappling with Meta-Information in the Internet, July 2010. Under submission.
- Mark Allman. On Building Special-Purpose Social Networks for Emergency Communication. ACM Computer Communication Review, 40(5), October 2010. To appear.
- Chitra Muthukrishnan, Vern Paxson, Mark Allman, Aditya Akella. Using Strongly Typed Networking to Architect for Tussle. ACM SIGCOMM Workshop on Hot Topics in Networks (HotNets), October 2010. To appear.