P&XSOII CS 161

Spring 2017 Computer Security Discussion 11

Week of Aprﬂ 17, 2017

Question 1 DNSSEC (20 min)
In class, you learned about DNSSEC, which uses certificate-style authentication for DNS
results.

(a) In the case of a negative result (the name requested doesn’t exist), what is the
result returned by the nameserver to avoid dynamically signing a statement such
as “aaa.google.com does not exist”? (This should be a review from lecture.)

Solution: The nameserver uses a canonical alphabetical ordering of all record
names in its zone. It creates (off-line) signed statements for each pair of adjacent
names in the ordering. When a request comes in for which there is no name,
the nameserver replies with the record that lists the two existing names just
before and just after where the requested name would be in the ordering. This
proves the non-existence of the requested name. The reply is called an NSEC
resource record.

For example, suppose the following names exist in google.com when it’s viewed
in alphabetical order:

a-one-and-a-two-and-a-three-and-a-four.google.com
alsauce.google.com
aardvark.google.com

In this ordering, aaa.google.com would fall between alsauce.google.com and
aardvark.google.com. So in response to a DNSSEC query for aaa.google. com,
the name server would return an NSEC RR that in informal terms states “the
name that in alphabetical order comes after alsauce.google.com is
aardvark.google.com”, along with a signature of that NSEC RR made using
google.com’s key.

The signature allows the recipient to verify the validity of the statement, and
by checking that aaa.google.com would have fallen between those two names,
the recipient has confidence that the name indeed does not exist.

(b) One drawback with this approach is that an attacker can now enumerate all the
record names in a zone. Why is this a security concern?

Page 1 of 7



Solution: Revealing this information could aid in other attacks. For example,
the names in a zone could be used as targets when probing for vulnerable servers.

(¢) How could you change the response sent by the nameserver to avoid this issue?

HINT: One of the crypto primitives you learned about will be helpful.

Solution: Instead of sorting on the domains, the sorting is done on hashes of
the names. For example, suppose the procedure is to use SHA1 and then sort
the output treated as hexadecimal digits. If the original zone contained:

barkflea.foo.com
boredom.foo.com
bug-me.foo.com
galumph.foo.com
help-me.foo.com
perplexity.foo.com
primo.foo.com

then the corresponding SHA1 values would be:

barkflea.foo.com = e24f2a7b9fa26e2a0c201a7196325889abf7c45b
boredom.foo.com = 6d0edfd3efabbf11b094cb26a7c95a3bd5e85a84
bug-me.foo.com = 649bb99765bb29c379d935a68db2eebc95ad6a29
galumph.foo.com = 71d0549ab66459447a62b639849145dacelfab8e
help-me.foo.com = 1ed14d3733£88e5794cd30cbbef8cc32fad7db2a
perplexity.foo.com = 446ac4777£8d3883da81631902fafd0eba3064ec
primo.foo.com = 8a1011003ade80461322828f3b55b46c44814d6Db

Sorting these on the hex for the hashes:

help-me.foo.com = 1ed14d3733£88e5794cd30cbbef8cc32fad7db2a
perplexity.foo.com = 446ac4777£8d3883da81631902fafd0eba3064ec
bug-me.foo.com = 649bb99765bb29c379d935a68db2eebc95ad6a29
boredom.foo.com = 6d0edfd3efabbf11b094cb26a7c95a3bd5e85a84
galumph.foo.com = 71d0549ab66459447a62b639849145dacelfab8e
primo.foo.com = 8a1011003ade80461322828£3bbbb46c44814d6Db
barkflea.foo.com = e24f2a7b9fa26e2a0c201a7196325889abf7c45b

Now if a client requests a lookup of snup.foo.com, which doesn’t exist, the name
server will return a record that in informal terms states “the hash that in al-
phabetical order comes after 71d0549ab66459447a62b639849145dacelfab8e is
8a1011003ade80461322828f3b55b46c44814d6b” (again along with a signature
made using foo.com’s key). This type of Resource Record is called NSECS3.

The client would compute the SHA1 hash of snup.foo.com:

Discussion 11 Page 2 of 7 CS 161 - SP 17



snup.foo.com = 81a8eb88bf3dd1£80c6d21320b3bc989801caae?

and verify that in alphabetical order it indeed falls between those two returned
values (standard ASCII sorting collates digits as coming before letters). That
confirms the non-existence of snup.foo.com but without indicating what names
do exist, just what hashes exist.

By using a cryptographically strong hash function like-SHA}, it’s believed
infeasible to reverse the hash function to find out what name(s) appear in the
zone (there’s more than one potential name because hash functions are many-
to-one). Note though that an attacker can still conduct a dictionary attack,
either directly trying names to see whether they exist, or inspecting the hash
values returned by NSEC3 RRs to determine whether names in a dictionary (for
which the attacker computes hash values offline) indeed appear in the domain.

Question 2 DNSSEC / TLS (15 min)

(a) Oski wants to securely communicate with CalBears.com using TLS. Which of the
following entities must Oski trust in order to communicate with confidentiality,
integrity, and authenticity?

1. The operators of CalBears.com 7. CalBears.com’s CA
2. Oski’s computer 8. All of the CAs that come configured
into Oski’s browser
3. Cryptographic algorithms
9. All of the CAs that come configured
4. Computers on Oski’s local network into CalBears.com’s software
5. The operators of CalBears.com’s au- 10. The operators of .com’s Authorita-

thoritative DNS servers tive DNS servers

6. The entire network between Oski 11. The operators of the Authoritative
and CalBears.com DNS root servers

Solution: (1) The operators of CalBears.com, (2) Oski’s computer, (3) Cryp-
tographic algorithms, (7) CalBears.com’s Certificate Authority, (8) All of the
CAs that come configured into Oski’s browser. This last would not be the case
if Oski’s client has pinned the CalBears.com certificate.

(b) Suppose we didn’t want to trust any of the existing CAs, but DNSSEC was widely
deployed and we were willing to trust DNSSEC and the operators of the root zone

L As we know, SHA1 is no longer considered secure for many use cases. Using stronger hash functions for
DNSSEC is therefore recommended. That said, the property we need from the hash function is one-way-ness,
which to date is not an identified weakness of SHA1 (nor of MD5, in fact).

Discussion 11 Page 3 of 7 CS 161 — SP 17


https://shattered.it/
https://tools.ietf.org/html/rfc5702

and of .com. How could TLS be modified, to avoid the need to trust any of the
existing CAs, under these conditions?

Solution: The basic idea would be for a TLS client to retrieve a site’s public
keys via DNSSEC records from the site’s domain, rather than via a certificate
sent by the server and signed by a CA. Such an approach could also instead
return signatures of public keys that the server would then still send to the
TLS client; the client would now validate the public key based on the signature
received via DNSSEC rather than some CA. The inspiration for this question
came from DNS-based Authentication of Named Entities (DANE). DANE is a
standard currently under development that, among other things, allows certifi-
cates to be bound to DNSSEC records.

(c¢) Assume end-to-end DNSSEC deployment as well as full deployment of your change.
Oski wants to securely communicate with CalBears.com using TLS. What changes
are there to the list in part A (i.e., what must Oski trust in order to communicate
with confidentiality, integrity, and authenticity)?

Solution: No longer need to trust: (8) All of the CAs that are configured
in Oski’s browser, (7) CalBears.com Certificate Authority.

Also need to trust: (5) The operators of CalBears.com’s authoritative DNS
servers, (10) The operators of .com’s authoritative DNS servers, (11) The oper-
ators of the authoritative DNS root servers.

(d) Is this change good or bad? List at least one positive and one negative effect that
would result from this change.

Solution: Many answers are possible here. One could say that it’s a good
change because there are now fewer parties to trust. Another answer is that it’s
a good change because it associates trust directly with parties associated with
a domain, rather than with all CAs. But one could also argue that now the
operators of the root name servers gain a great deal of power.

Question 3 TLS downgrade attacks (15 min)

(a) Rather than prescribing specific cryptographic functions, the TLS protocol allows
the browser and server to agree on a cipher suite. What are the different components
of a cipher suite that the parties need to negotiate?

Solution: The client and server need to negotiate the functions for each of the
cryptographic operations performed by TLS. In particular, they need to agree
about:

Discussion 11 Page 4 of 7 CS 161 - SP 17



e The key exchange method, such as RSA or Diffie-Hellman. In the
latter case, an authentication method is also needed to specify how the
server will use the key in its certificate to authenticate the Diffie-Hellman
parameter (i.e., which signature algorithm it will use).

e The encryption algorithm used on the data sent over the secure channel.
Specifying this typically requires including the key size and cipher mode
to use with the specific encryption function.

e The MAC algorithm used to authenticate the data.

e The pseudorandom function used to derive the master secret (essen-
tially, a PRNG).

A specific combination of these choices is called a cipher suite, and there are
hundreds to choose from. Each is referred to by a name like

TLS_ECDHE RSA WITH AES 128 GCM_SHA256, which represents some of the chosen
crypto functions (though to get the full details, you have to look it up in the
appropriate RFC).

(b) How do the parties find out which cipher suites the other supports? Who ultimately
gets to choose which cipher suite is chosen? How do they choose?

Solution: The client includes a list of the cipher suites it supports in the
ClientHello message.

The server will determine which of the client’s cipher suites it supports, decide
(assuming there is overlap) which one it wants to use, and notify the client of
its choice as part of the ServerHello message.

A server will typically want to use the strongest cipher suite and parameters
available, however this is determined entirely by the server’s configurations. It
is therefore very important to configure a server’s TLS carefully.

(¢) Suppose Mallory knows how to break certain cryptographic primitives. Alice and
Bob.com, communicating over TLS, both support the cipher suite with the vul-
nerable crypto, as well as others that are not broken. How can Mallory carry out
a man-in-the-middle attack? Which of the crypto primitives must she be able to
break for the attack to succeed?

Solution: When Alice sends her ClientHello to Bob.com, she will include
the weak cipher suites as well as the ones that aren’t vulnerable. By default,

Bob.com is likely to choose one of the stronger suites, but Mallory can force his
hand.

Discussion 11 Page 5 of 7 CS 161 — SP 17


https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
https://wiki.mozilla.org/Security/Server_Side_TLS

Since the ClientHello isn’t encrypted, Mallory can change it to exclude the
cipher suites she doesn’t want Bob.com to choose. For example, if she knows
how to break 3DES encryption, she can remove all cipher suites that use other
encryption algorithms. This is called a downgrade attack.

However, you'll recall that TLS includes a step to verify the integrity of the
handshake: as part of the Finished message, the client and server exchange
MACs of their prior dialog. Since this will include the ClientHello message
and its contents, Mallory needs to be able to falsify this message. Therefore, if
she wants to carry out a successful man-in-the-middle attack, Mallory must be
able to break the MAC function, in addition to whatever else she was able to
break.

Bonus fun fact Interestingly, two known downgrade attacks on TLS—FREAK
and Logjam—were able to circumvent this requirement. Both targeted the key

exchange algorithm and relied on downgrading connections from secure versions

of RSA and Diffie Hellman to “export” versions that used smaller key sizes and

were consequently broken.

In these attacks, a man-in-the-middle could modify the client’s Hello to ask for
weaker parameters. When the server responded, the client couldn’t tell that it
had received weaker parameters due to bugs in client implementations or TLS
itself?(in FREAK and Logjam, respectively).

While the later MACs over the handshake would normally catch the discrepancy,
by that point, it’s too late: with the weakened key-exchange parameters, the
attacker can compromise the encrypted premaster secret to derive the master
secret. Knowing the master secret, the attacker can generate their own fake
MACs (as well as decrypt any future communication).

(d) Is there anything Alice and Bob.com can do to prevent attacks like this?

Solution: Fundamentally, no: as long as both parties are willing to use weak
cryptographic primitives, and these are broken (including, specifically, the ones
that guarantee integrity, as described above), then a downgrade attack is theo-
retically possible.

However, as the real-world examples show, many attacks can be prevented in

2The attack “relies on a flaw in the way TLS composes DHE and DHE_EXPORT. When a server selects
DHE_EXPORT for a handshake, it proceeds by issuing a signed ServerKeyExchange message containing
a 512-bit psi12, but the structure of this message is identical to the message sent during standard DHE
ciphersuites. Critically, the signed portion of the server’s message fails to include any indication of the specific
ciphersuite that the server has chosen. [...] The client will interpret the export-grade tuple (psi2, g, 9°) as
valid DHE parameters chosen by the server and proceed with the handshake.”

Discussion 11 Page 6 of 7 CS 161 — SP 17


https://mitls.org/pages/attacks/SMACK#freak
https://weakdh.org/
https://blog.cryptographyengineering.com/2015/03/03/attack-of-week-freak-or-factoring-nsa/

practice by being explicit about one’s choices and including as much information
as possible when checking for integrity.

Discussion 11 Page 7 of 7 CS 161 — SP 17



