
Paxson
Spring 2017

CS 161
Computer Security Discussion 10

Week of April 10, 2017

Question 1 TLS protocol details (25 min)
Depicted below is a typical instance of a TLS handshake. Use the image to help answer
the questions.

Client Server

1. Client sends 256-bit random number Rb and supported
ciphers

2. Server sends 256-bit random number Rs and chosen ci-
pher

3. Server sends certificate

4. DH: Server sends {g, p, ga mod p}K−1
server

5. Server signals end of handshake

6. DH: Client sends gb mod p
RSA: Client sends {PS}Kserver

Client and server derive cipher keys Cb, Cs and integrity
keys Ib, Is from Rb, Rs, PS

7. Client sends MAC(dialog, Ib)

8. Server sends MAC(dialog, Is)

9. Client data takes the form {M1,MAC(M1, Ib)}Cb

10. Server data takes the form {M2,MAC(M2, Is)}Cs

ClientHello

ServerHello

Certificate

ServerKeyExchange

ServerHelloDone

ClientKeyExchange

ChangeCipherSpec, Finished

ChangeCipherSpec, Finished

Application Data

Application Data

Figure 1: TLS 1.2 Key Exchange

(a) What is the purpose of the client random and server random fields?

Solution: Because the master secret depends on these, they act as nonces that
prevent replay attacks.

(b) ClientHello and ServerHello are not encrypted or authenticated. What would hap-

Page 1 of 4



pen if somebody eavesdropped on them? What about an active man-in-the-middle?

Solution: The use of either public key encryption (RSA handshake) or a Diffie-
Hellman exchange prevents an eavesdropper from learning the Premaster Secret.

A MITM attacker who alters any of the values will be exposed, as follows.

For the RSA handshake case, the MITM will be unable to read the Premaster
Secret sent by the client because it is encrypted using the server’s public key.
When the client and server exchange MACs over the the handshake dialog, the
MITM will be unable to compute the correct MACs for their altered dialog
because they will not know the corresponding integrity keys derived from the
Master secret.

For the Diffie-Hellman case, the MITM will be unable to alter the value of
ga mod p, because the client requires that the value have a correct signature
using the server’s public key. Because the MITM cannot alter the value, they
cannot substitute ga

′
mod p for which they know a′. Without knowledge of

the exponent, the MITM cannot compute gab mod p to obtain the Premaster
Secret.

(c) Unlike the ServerKeyExchange, the ClientKeyExchange is sent without a signature.
Why is this the case, and what are the implications?

Solution: In this handshake, the client does not provide a verifiable public
key (since it, unlike the server, does not hold a certificate), and so cannot sign
messages. This means the client is un-authenticated: the server does not know
who it is talking to. This generally works fine for HTTP, since it is the server
for which authentication is the #1 concern.

That said, TLS does have support for client-side certificates as well, which can be
used for authenticating clients to servers. The potential use of such certificates
is part of the initial negotiation in the Client/Server Hello exchange.

(d) TLS provides end-to-end authentication, integrity, and confidentiality guarantees.
Is that enough to make online commerce safe and secure? Why or why not?

Solution: TLS provides secure communication between a client and server, but
was not specifically designed for online transactions. For instance, the browser
checks the name in the certificate against the site’s domain name, but this gives
no assurance that the site is a bona fide merchant. Similarly, the online merchant
has no way to check that the person making the purchase is authorized to use
the credit card. Customers can repudiate purchases, claiming their credit card
number was stolen.

Discussion 10 Page 2 of 4 CS 161 – SP 17



Question 2 TLS threats (15 min)
An attacker is trying to attack the company Wahoo and its users. Assume that users
always visit Wahoo’s website with an HTTPS connection, using RSA and AES encryp-
tion (no Diffie-Hellman). You should also assume that Wahoo does not use certificate
pinning. The attacker may have one of three possible goals:

1. Impersonate the Wahoo web server to a user

2. Discover some of the plaintext of data sent during a past connection between a user
and Wahoo’s website a user and Wahoo’s website

3. Replay data that a user previously sent to the Wahoo server over a prior HTTPS
connection

For each of the following scenarios, describe if and how the attacker can achieve each
goal.

(a) The attacker obtains a copy of Wahoo’s certificate.

Solution: None of the above. The certificate is public. Anyone can obtain a
copy simply by connecting to Wahoo’s webserver. So learning the certificate
doesn’t help the attacker.

(b) The attacker obtains the private key of a certificate authority trusted by users of
Wahoo.

Solution: The attacker can impersonate the Wahoo web server to a user. The
attacker can’t decrypt past data, because the attacker doesn’t learn Wahoo’s
private key—only the CA’s private key. All that the CA’s private key can be
used for is to create bogus certificates, which can be used to fool the client into
thinking it is talking to Wahoo—but doesn’t allow learning past data. Replays
aren’t possible, due to the nonces in the TLS handshake.

(c) The attacker obtains the private key that was used by Wahoo’s server during a
past connection between a victim and Wahoo’s server, but not the current private
key. Also, assume that the certificate corresponding to the old private key has been
revoked and is no longer valid.

Solution: The attacker can discover all of the plaintext of data sent during a
past connection (one where the old private key was used) between a user and
Wahoo’s website. Since the server is using RSA, an attacker who learns the
RSA private key can decrypt past sessions (the attacker can decrypt to learn
the premaster secret, derive the symmetric keys, and decrypt all of the data).

This can’t be used to impersonate a Wahoo server, however, because the attacker

Discussion 10 Page 3 of 4 CS 161 – SP 17



doesn’t have a fresh valid certificate corresponding to the stolen private key, and
can’t use the previous certificate for that key because it’s been revoked.

Question 3 Denial-of-service on the web (10 min)
Your friend has just launched SiteTester.com, a cool web service that helps website
developers see how their web site will look when rendered with Chrome vs. how it will
look in Internet Explorer.

The service is pretty simple. If you visit a URL like
http://sitetester.com/?u=http://berkeley.edu/, the SiteTester server launches a
process running the Chrome browser, loads http://berkeley.edu/ in Chrome, and
takes a screenshot of the Chrome window after the site finishes loading. In paral-
lel, SiteTester starts up Internet Explorer, loads http://berkeley.edu/ in Internet
Explorer, and takes a screenshot of Internet Explorer after the page loads. After
both screenshots are available, the SiteTester server serves you a dynamically-generated
HTML document that shows both screenshots side-by-side. (Note that, while the
SiteTester is handling this HTTP request from the user, it will to issue two separate
HTTP requests to berkeley.edu, one for each browser.) The SiteTester service can
be used on any web page you specify; everything after the ?u= is treated as a URL
and loaded into both browsers. This makes SiteTester very useful to web developers for
testing how portable their website is.

How could an attacker mount a denial-of-service attack against the SiteTester server,
simply by visiting a single URL? Show in your answer the malicious URL that causes
so much trouble. You can assume the SiteTester developers haven’t taken any special
precautions against denial of service.

Solution: http://sitetester.com/?u= http://sitetester.com/?u=︸ ︷︷ ︸
repeat many times

· · ·

With n repetitions, SiteTester will make 2n HTTP requests. If n is large, this will
likely overload the SiteTester server.

Your answer should not assume that SiteTest’s server has XSS vulnerabilities or
other software bugs.

Discussion 10 Page 4 of 4 CS 161 – SP 17


