P&XSOII CS 161

Spring 2017 Computer Security Discussion 3

Week Of FGIDI‘U.&I‘Y 6, 2017

Question 1 Warmup: SOP (15 min)
The Same Origin Policy (SOP) helps browsers maintain a sandboxed model by preventing
certain webpages from accessing others. Two resources (can be images, scripts, HTML,
etc.) have the same origin if they have the same protocol, port, and host. As an
example, the URL http://inst.berkeley.edu/eecs has the protocol HT'TP, its port
is implicitly 80, the default for HT'TP, and the host is inst.berkeley.edu.

Fill in the table below indicating whether the webpages shown can be accessed by
http://amazon.com/store/item/83.

Origin Can Access? | Reason if not
http://store.amazon.com/item/83
http://amazon.com/user/56
https://amazon.com/store/item /345
http://amazon.com:2000/store
http://amazin.com/store

Solution:
Origin Can Access? Reason if not
http://store.amazon.com/item/83 No different host
http://amazon.com/user/56 Yes
https://amazon.com/store/item/345 No different protocol
http://amazon.com:2000/store No different port
http://amazin.com /store No different host

Page 1 of 4

Question

2 Sesston Fization (10 min)

Some web application frameworks allow cookies to be set by the URL. For example,
visiting the URL

http://foobar.edu/page.html?sessionid=42.

will result in the server setting the sessionid cookie to the value “42”.

(a) Can you spot an attack on this scheme?

(b) Suppose the problem you spotted has been fixed as follows. foobar.edu now es-
tablishes new sessions with session IDs based on a hash of the tuple (username,
time of connection). Is this secure? If not, what would be a better approach?

(a)

Solution:

The main attack is known as session fization. Say the attacker establishes a ses-
sion with foobar.edu, receives a session ID of 42, and then tricks the victim into
visiting http://foobar.edu/browse.html?sessionid=42 (maybe through an
img tag). The victim is now browsing foobar.edu with the attacker’s account.
Depending on the application, this could have serious implications. For exam-
ple, the attacker could trick the victim to pay his bills instead of the victim’s
(as intended).

Another possibility is for the attacker to fix the session ID and then send the user
a link to the log-in page. Depending on how the application is coded, it might
so happen that the application allows the user to log-in but reuses the previous
(attacker-set) session ID. For example, if the victim types in his username and
password at http://foobar.edu/login.html?sessionid=42, then the session
ID 42 would be bound to his identity. In such a scenario, the attacker could
impersonate the victim on the site. This is uncommon nowadays, as most login
pages reset the session ID to a new random value instead of reusing an old one.

The proposed fix is not secure since it solves the wrong problem, per the discus-
sion in part (a). Even if it were the right approach, timestamps and user names
do not provide enough entropy, and could be guessable with a few thousand
tries.

The correct fix is for the server to generate cookie values afresh, rather than
setting them based on the session ID provided via URL parameters.

Question

3 SQL Injection (15 min)

(a) Explain the bug in this PHP code. How would you exploit it? Write what you
would need to do to delete all of the tables in the database.

Discussion 3

$query = "SELECT name FROM users WHERE uid = $UID";
// Then execute the query.

Page 2 of 4 CS 161 — SP 17

(Here, $UID represents a URL parameter named UID supplied in the HTTP request.
The actual representation of such a value in PHP is a bit messier than we’ve shown
here. We leave out the syntactic details so we can focus on the functionality.)

(b) How does blacklisting work as a defense? What are some difficulties with blacklist-
ing?

(c) What is the best way to fix this bug?

(a)

Solution:

The bug is that the uid parameter can be interpreted as a command when
properly formatted. For example, to delete the users table, pass in the following
as the uid:

O; DROP TABLE users;

Blacklisting means escaping what you consider “dangerous” characters — es-
sentially characters that can be used to change control flow or be interpreted as
commands rather than as data (e.g., quotation marks and semicolons).

A difficulty in blacklisting is that it is all too easy to forget to avoid one dan-
gerous character, which leaves a vector of attack.

In this case, a simple fix would be to use a whitelist since uid only needs
digits. In essence, you are constraining the type of $UID to an integer. Such
a whitelisting approach can also work for strings, but is prone to errors. See
below for a better solution.

The underlying issue is that data can be interpreted as a command. The solution
to this general issue is to separate the parsing of the query from the ezxecution
(when the data is supplied). Prepared statements (or parameterized queries)
offer exactly this. The SQL expression is only parsed once, with placeholders
for data. In a second step, the placeholders are replaced with the user input,
without changing the intent of the SQL expression. Consider the following
example:

$query = $db->prepare(’SELECT name FROM users WHERE uid = :user’);
$query->execute(array(’ :user’ => $UID));

[13

The first line defines the SQL expression with a placeholder “:user” that is
substituted with user input in the second line. (This placeholder was a “?”
instead in the Java example shown in lecture. Same idea.) Note that the
substituted input is not parsed as SQL anymore as this already happened in the
first line. Therefore an attacker cannot provide bogus SQL commands because
they will only be interpreted as data that is bound to the variable :user.

Question

4 Cross Site Request Forgery (CSRF) (10 min)

In a CSRF attack, a malicious user is able to take action on behalf of the victim. Consider

Discussion 3

Page 3 of 4 CS 161 — SP 17

the following example. Mallory posts the following in a comment on a chat forum:

Of course, Patsy-Bank won’t let just anyone request a transaction on behalf of any given
account name. Users first need to authenticate with a password. However, once a user
has authenticated, Patsy-Bank associates their session ID with an authenticated session
state.

(a) Explain what could happen when Victim Vern visits the chat forum and views
Mallory’s comment.

(b) What are possible defenses against this attack?

Solution:

(a) The img tag embedded in the form causes the browser to make a request to
http://patsy-bank.com/transfer?amt=1000&to=mallory with Patsy-Bank’s
cookie. If Victim Vern was previously logged in (and didn’t log out), Patsy-Bank
might assume Vern is authorizing a transfer of 1000 USD to Mallory.

(b) CSREF is caused by the inability of Patsy-Bank to differentiate between requests
from arbitrary untrusted pages and requests from Patsy-Bank form submissions.
The best way to fix this today is to use a token to bind the requests to the form.
For example, if a request to http://patsy-bank.com/transfer is normally
made from a form at http://patsy-bank.com/askpermission, then the form
in the latter should include a random token that the server remembers. The form
submission to http://patsy-bank.com/transfer includes the random token
and Patsy-Bank can then compare the token received with the one remembered
and allow the transaction to go through only if the comparison succeeds.

Discussion 3 Page 4 of 4 CS 161 — SP 17

