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Review of Where We’re At 
•  Alice employs an Encryptor E to produce 

ciphertext from plaintext. 
•  Bob employs a Decryptor D to recover plaintext 

from ciphertext. 

•  So far, both E and D are configured using the 
same key K. 

•  K is a shared secret between Alice and Bob 
–  Eavesdropper Eve doesn’t know it 

(otherwise, disaster!) 
•  Use of same secret key for E and D ⇒ 
“symmetric-key cryptography” 



Block cipher 

A function E : {0, 1}b ×{0, 1}k → {0, 1}b. Once we fix the 
key K (of size k bits), we get:  
EK : {0,1}b → {0,1}b   denoted by EK(M) = E(M,K). 

 (and also D(C,K), E(M,K)’s inverse) 
•  Three properties: 

–  Correctness: 
•  EK(M) is a permutation (bijective function) on b-bit strings 
•  Bijective ⇒ invertible 

–  Efficiency: computable in 𝜇sec’s sec’s 
–  Security: 

•  For unknown K, “behaves” like a random permutation 

•  Provides a building block for more extensive encryption 



DES (Data Encryption Standard) 
•  Designed in late 1970s 
•  Block size 64 bits, key size 56 bits 
•  NSA influenced two facets of its design 

–  Altered some subtle internal workings in a mysterious way 
–  Reduced key size 64 bits ⇒ 56 bits 

•  Made brute-forcing feasible for attacker with massive (for the time) 
computational resources 

•  Remains essentially unbroken 40 years later! 
–  The NSA’s tweaking hardened it against an attack “invented” 

a decade later 
•  However, modern computer speeds make it 

completely unsafe due to small key size 



Today’s Go-To Block Cipher: 
AES (Advanced Encryption Standard) 

•  20 years old 
•  Block size 128 bits 
•  Key can be 128, 192, or 256 bits 

–  128 remains quite safe; sometimes termed “AES-128” 
•  As usual, includes encryptor and (closely-related) 

decryptor 
•  How it works is beyond scope of this class 
•  Not proven secure 

–  but no known flaws 
–  so we assume it is a secure block cipher 



How Hard Is It To Brute-Force 128-bit Key? 

•  2128 possibilities – well, how many is that? 
•  Handy approximation: 210 ≈ 103 

•  2128 = 210*12.8 ≈ (103)12.8 ≲ (103)13 ≈ 1039 

•  Say we build massive hardware that can try 109 
keys in 1 nsec 
–  So 1018 keys/sec 
–  Thus, we’ll need ≈ 1021 sec 

•   How long is that? 
–  One year ≈ 3x107 sec 
–  So need ≈ 3x1013 years ≈ 30 trillion years 



Issues When Using the 
Building Block 

•  Block ciphers can only encrypt messages of 
a certain size 
–  If M is smaller, easy, just pad it (details omitted) 
–  If M is larger, can repeatedly apply block cipher 

•  Particular method = a “block cipher mode” 
•  Tricky to get this right! 

•  If same data is encrypted twice, attacker 
knows it is the same 
– Solution: incorporate a varying, known quantity 

(IV = “initialization vector”) 



Electronic Code Book (ECB) mode 

•  Simplest block cipher mode 
•  Split message into b-bit blocks P1, P2, … 
•  Each block is enciphered independently, 

separate from the other blocks 
 Ci = E(Pi, K) 

•  Since key K is fixed, each block is subject 
to the same permutation 
–  (As though we had a “code book” to map each 

possible input value to its designated output) 



P1 P2 P3 

C1 C2 C3 

Encryption 



P1 P2 P3 

C1 C2 C3 

Decryption 

Problem: Relationships between Pi’s reflected in Ci’s 



Original image, RGB values split into a bunch of b-bit blocks 



Encrypted with ECB and interpreting ciphertext directly as RGB 



Later (identical) message again encrypted with ECB 



Building a Better Cipher Block Mode 

1. Ensure blocks incorporate more than just the 
plaintext to mask relationships between 
blocks.  Done carefully, either of these works: 

–  Idea #1: include elements of prior computation 
–  Idea #2: include positional information 

2. Plus: need some initial randomness 
–  Prevent encryption scheme from determinism 

revealing relationships between messages 
–  Introduce initialization vector (IV) 

•  Example: Cipher Block Chaining (CBC) 



P1 P2 P3 

C1 C2 C3 

CBC: Encryption 
E(Plaintext, K):   
•  If b is the block size of the block cipher, split the plaintext 

in blocks of size b: P1, P2, P3,.. 
•  Choose a random IV (do not reuse for other messages) 
•  Now compute: 

•  Final ciphertext is (IV, C1, C2, C3).  This is what Eve sees. 



P1 P2 P3 

C1 C2 C3 

CBC: Decryption 
D(Ciphertext, K):   
•  Take IV out of the ciphertext 
•  If b is the block size of the block cipher, split the ciphertext 

in blocks of size b: C1, C2, C3, … 
•  Now compute this: 

•  Output the plaintext as the concatenation of P1, P2, P3, ... 



Original image, RGB values split into a bunch of b-bit blocks 



Encrypted with CBC 



CBC 

Widely used 
 
Issue: sequential encryption, hard to parallelize 
 
Parallelizable alternative: CTR mode 
 
Security: If no reuse of nonce, both are 
provably secure 
(assuming underlying block cipher is secure) 



(Nonce = Same as IV) 

C1 C2 C3 

P1 P2 P3 

CTR: Encryption 

Important that nonce/IV does not 
repeat across different encryptions. 

Choose at random!  



Note, CTR decryption uses block 
cipher’s encryption, not decryption 

C1 C2 C3 

P1 P2 P3 

CTR: Decryption 



Modern Symmetric-Key Encryption: 

Stream Ciphers 



Stream ciphers 

•  Block cipher: fixed-size, stateless, requires 
“modes” to securely process longer messages 

•  Stream cipher: keeps state from processing past 
message elements, can continually process new 
elements 

•  Common approach: “one-time pad on the cheap”:  
–  XORs the plaintext with some “random” bits 

•  But: random bits ≠ the key (as in one-time pad) 
–  Instead: output from cryptographically strong 

pseudorandom number generator (PRNG) 
 



Pseudorandom Number Generators 
(PRNGs) 

•  Given a seed, outputs sequence of seemingly 
random bits.  (Keeps internal state.) 

       PRNG(seed) ⇒ “random” bits 
•  Can output arbitrarily many random bits 
•  Can a PRNG be truly random? 

–  No.  For seed length s, it can only generate at most 
2s distinct possible sequences. 

•  A cryptographically strong PRNG “looks” truly 
random to an attacker 
–  attacker cannot distinguish it from a random sequence 



Building Stream Ciphers 

Encryption, given key K and message M: 
–  Choose a random value IV 
–  E(M, K) = PRNG(K, IV) ⊕ M 

Decryption, given key K, ciphertext C, and 
initialization vector IV: 

–  D(C, K) = PRNG(K, IV) ⊕ C 
Can encrypt message of any length 
because PRNG can produce any number 
of random bits 



Mi 

(Small) K, IV 

PRNG	

Keystream 

⨁ 

Mi: ith message 
of plaintext 

(Small) K, IV 

PRNG	

Keystream 

⨁ 
Ci 

Alice Bob 

Using a PRNG to Build a 
Stream Cipher 



Okay, but how do we build a 
Cryptographically Strong PRNG? 

•  Here’s a simple design for a PRNG that generates 
128-bit pseudo-random numbers 
–  Only state needed is SEED and N (# of calls so far) 

•  PRNG(SEED) = { return AES-128SEED(++N) } 
–  i.e., encrypt counter of # of calls using SEED as key 
–  Because AES-128 acts like a random permutation of 

128-bit bitstrings, even a tiny change in input such as 
N vs. N+1 completely and unpredictably changes output 



Building a Cryptographically 
Strong PRNG, con’t 

•  Here’s a version that incorporates an IV 
–  Only state needed is SEED and N (# of calls so far), plus 

an IV 
•  PRNG(SEED, IV) 

 = { return AES-128SEED(++N ⊕ IV) } 
–  i.e., encrypt (counter of # of calls, XOR’d with IV) using 

SEED as key 

•  In fact, let’s compare using this PRNG to build a 
stream cipher with the block cipher “CTR” mode … 



Mi 

IV⨁(++n) 

AES-128K	

Keystream 

⨁ 

Mi: ith message 
of plaintext 

IV⨁(++n) 

AES-128K	

Keystream 

⨁ 
Ci 

Alice Bob 

Using a PRNG to Build a 
Stream Cipher 



Only difference from our stream cipher built on AES-128 is use 
of a different operator (concatenation vs. XOR) to combine IV 
and counter.  Both are equally secure as long as IV is random. 

(Nonce = Same as IV) 

C1 C2 C3 

P1 P2 P3 

AES-128 AES-128 AES-128 



Mi: ith message 
of plaintext 

Alice Bob 

Eve 

E(Mi,	K)	
Ci: ith message 
of ciphertext D(Ci,	K)	

K K 

Ci 

Mi 

Mi? 

E(Mi, K) and D(Ci, K) are 
inverses for the same K 

“Symmetric-key encryption” 



Mi: ith message 
of plaintext 

Alice Bob 

Eve 

E(Mi,	KE)	
Ci: ith message 
of ciphertext D(Ci,	KD)	

KE KD 

Ci 

Mi 

Mi? 

E(Mi, KE) and D(Ci, KD) are 
inverses for particular KE and KD 

“Asymmetric-key encryption” 



Mi: ith message 
of plaintext 

Alice Bob 

Eve 

Ci: ith message 
of ciphertext 

Ci 

Mi 

Mi? 

E(Mi,	KE)	 D(Ci,	KD)	

KE 
“Asymmetric-key encryption” 

KD 

E(Mi, KE) and D(Ci, KD) are 
inverses for particular KE and KD 



Public Key Cryptography 

•  Having two keys rather than one seems like a 
step backwards … 

•  ... However, what if knowing KE (and E and D) 
doesn’t allow Eve to infer KD? 

•  If Bob can generate a pair ⟨KE, KD⟩ that have this 
property for E and D, then Bob can just publish KE 
for the world to see 
–  No need to pre-exchange keys with Alice! 



Mi: ith message 
of plaintext 

Alice Bob 

Eve 

E(Mi,	KE)	
Ci: ith message 
of ciphertext D(Ci,	KD)	

KE 

Ci 

Mi 

Mi? 

E(Mi, KE) and D(Ci, KD) are 
inverses for particular KE and KD 

“Public-key encryption” 

KD KD? KE 



Public Key Cryptography, con’t 

•  For Eve, encryption function EK(Mi) is now fully 
determined!  Surely she can invert it … ? 

•  EK needs to be a one-way function, such that 
computing EK

-1(x) is computationally intractable … 
•  ... Unless you have some additional knowledge 

–  i.e., KD 

•  Where can we get such a seemingly magic pair of 
functions E along with D = EK

-1(x)? 
–  Let’s look at one such public-key approach: RSA 



Number Theory Refresher: Efficient 
Multiplication/Exponentitation 

•  If ‘a’ and ‘b’ have N bits each: 
 
Can multiply them in O(N2) time 

 (actually, a bit faster) 
 
Can exponentiate modulo p 
(ab mod p or ba mod p) in O(N3) time 

•  We’re going to care about BIG integers (N≈1000) 



Number Theory Refresher: 
Totients 

•  φ(n) = totient of n 
 = # of i, 0 < i < n:  i and n are relatively prime 

•  φ(p) = p-1 if p is a prime 
φ(p·q) = (p-1)(q-1) if p, q are distinct primes 

•  Euler’s theorem: 
 
Given ‘a’ relatively prime to n, aφ(n) = 1 mod n  



Finding BIG Primes Quickly 
•  Here’s a probabilistic algorithm: 

1.  Generate a random candidate prime p' 
2.  Generate random integer a: 1 < a < p' - 1 
3.  Compute a(p'-1) mod p'.  If ≠ 1, discard p', go to 1 
4.  Otherwise, go to 2, unless have made enough 

iterations to have confidence p' “surely” must be prime 
•  Enough iterations: while ∃ non-primes for which the equation in 

Euler’s theorem almost always holds, they’re exceedingly rare 

•  Runs in O(N4) time for finding an N-bit prime 



Putting it all together: RSA 
1.  Generate random primes p, q 
2.  Compute n = p·q 
3.  Compute φ(n) = (p-1)(q-1) 

 Important: if Eve sees n, she can’t deduce φ(n) 
 unless she can factor n into p and q 

4.  Choose 2 < e < φ(n), where e and φ(n) are relatively prime 
 Could be something simple like e=3, if rel. prime. 

5.  Public key KE = { n, e }.  Both are Well Known. 
6.  Compute d = e-1 mod φ(n) 

 d is multiplicative inverse of e, modulo φ(n) 
 easy to find if you know φ(n) 

7.  Private key KD = { d } 
(believed) HARD to compute if you don’t know p, q  


