Confidentiality

CS 161: Computer Security

Prof. Vern Paxson

TAs: Paul Bramsen, Apoorva Dornadula,
David Fifield, Mia Gil Epner, David Hahn, Warren He,
Grant Ho, Frank Li, Nathan Malkin, Mitar Milutinovic,

Rishabh Poddar, Rebecca Portnoff, Nate Wang

http://inst.eecs.berkeley.edu/~cs161/

Review of Where We’re At

Alice employs an Encryptor E to produce
ciphertext from plaintext.

Bob employs a Decryptor D to recover plaintext
from ciphertext.

So far, both E and D are configured using the
same key K.

K is a shared secret between Alice and Bob

— Eavesdropper Eve doesn’t know it
(otherwise, disaster!)

Use of same secret key forE and D =

Block cipher

A function E : {0, 1} x{0, 1} — {0, 1}¢. Once we fix the
key K (of size k bits), we get:
E,:{0,1}>* - {0,1}> denoted by E (M) = E(M,K).
(and also D(C,K), E(M,K)’s inverse)
* Three properties:

— Correctness:
« Ex(M) is a permutation (bijective function) on b-bit strings
 Bijective = invertible

— Efficiency: computable in usec’s
— Security:
* Forunknown K, “behaves” like a random permutation

* Provides a building block for more extensive encryption

DES (Data Encryption Standard)

Designed in late 1970s
Block size 64 bits, key size 56 bits

— Altered some subtle internal workings in a mysterious way
— Reduced key size 64 bits = 56 bits

« Made brute-forcing feasible for attacker with massive (for the time)
computational resources

Remains essentially unbroken 40 years later!

— The NSA's tweaking hardened it against an attack “invented”
a decade later

However, modern computer speeds make it
completely unsafe due to small key size

Today’s Go-To Block Cipher:
AES (Advanced Encryption Standard)

20 years old
Block size 128 bits
Key can be 128, 192, or 256 bits

— 128 remains quite safe; sometimes termed “AES-128"

As usual, includes encryptor and (closely-related)
decryptor

How it works is beyond scope of this class

Not proven secure

— but no known flaws
— sO we assume it is a secure block cipher

How Hard Is It To Brute-Force 128-bit Key?

« 2128 possibilities — well, how many is that?
« Handy approximation: 279 = 103
o 2128 — 210*12.8 ~ (103)12.8 < (103)13 ~ 1039

« Say we build massive hardware that can try 10°
keys in 1 nsec

— So 1078 keys/sec
— Thus, we'll need = 1021 sec

— One year = 3x107 sec
— So need = 3x10"3 years = 30 trillion years

Issues When Using the
Building Block

* Block ciphers can only encrypt messages of
a certain size

— If M is smaller, easy, just pad it (details omitted)
— If M is larger, can repeatedly apply block cipher

 Particular method = a “block cipher mode”
* Tricky to get this right!
 If same data is encrypted twice, attacker
knows it is the same

— Solution: incorporate a varying, known quantity
(IV = “initialization vector”)

Electronic Code Book (ECB) mode

» Simplest block cipher mode
» Split message into b-bit blocks P, P, ...

« Each block is enciphered independently,
separate from the other blocks
Ci = E(P;, K)
» Since key K is fixed, each block is subject
to the same permutation

— (As though we had a “code book™ to map each
possible input value to its designated output)

Encryption

I:)1 I:)2 P3
Plaintext Plaintext Plaintext
(TTTTTTT] [TTT] l CTTTTTTT]
v v v
Block Cipher Block Cipher Block Cipher
Key —= Encryption Key —=| Encryption Key —= Encryption
' ' '
CCTTTTTT [TTTTTT) LTy
. C, . C, . C,
Ciphertext Ciphertext Ciphertext

Electronic Codebook (ECB) mode encryption

Decryption

Ciphertext Ciphertext Ciphertext
EEEEEEEE HEEEEEE EEEEEEER
LG .G C G
Block Cipher Block Cipher Block Cipher
Key —=| Decryption Key —= Decryption Key —=| Decryption
l | |
A \J
(TTITIT11] CITTT1T1T1] EEEEEEE
I:)1 Plaintext I:)2 Plaintext P3 Plaintext

Electronic Codebook (ECB) mode decryption

Original image, RGB values split into a bunch of b-bit blocks

Building a Better Cipher Block Mode

1. Ensure blocks incorporate more than just the
plaintext to mask relationships between
blocks. Done carefully, either of these works:

— ldea #1: include elements of prior computation
— ldea #2: include positional information

2.Plus: need some initial randomness

— Prevent encryption scheme from determinism
revealing relationships between messages

— Introduce initialization vector (1V)

« Example: Cipher Block Chaining (CBC)

CBC: Encryption

E(Plaintext, K):

« |If b is the block size of the block cipher, split the plaintext
in blocks of size b: P4, P,, Ps,..

 Choose a random |V (do not reuse for other messages)

Now compute:

Plaintext Plaintext Plaintext
P1 HEEEEN P2 [TTTT] P3 L]
Initialization Vector (IV)
[TTTT] - 4 . e
' ' '
Block Cipher Block Cipher Block Cipher
Key —| Encryption Key —=| Encryption Key —=| Encryption
' ' '
[TTTTTT] [TTTTTT] [TTTTTT]
C1 Ciphertext C2 Ciphertext C3 Ciphertext

Cipher Block Chaining (CBC) mode encryption
« Final ciphertextis (IV, C,, C,, C;). This is what Eve sees.

CBC: Decryption

D(Ciphertext, K):

« Take |V out of the ciphertext

« |f b is the block size of the block cipher, split the ciphertext
in blocks of size b: C,, C,, C,, ...

 Now compute this:

o C, C,

Initialization Vector (IV) Ciphertext Ciphertext Ciphertext
EEEEEEER [TTTTTT] [TTTTTT

v v v
Block Cipher Block Cipher Block Cipher
Key —= | Decryption Key —= Decryption Key —= Decryption

0 y 7
LT T CITTTTII] [TTTTT]
I:)1 Plaintext I:)2 Plaintext P3 Plaintext

Cipher Block Chaining (CBC) mode decryption
« OQOutput the plaintext as the concatenation of P, P,, P, ...

Original image, RGB values split into a bunch of b-bit blocks

CBC
Widely used
Issue: sequential encryption, hard to parallelize

Parallelizable alternative: CTR mode

Security: If no reuse of nonce, both are
provably secure
(assuming underlying block cipher is secure)

CTR: Encryption

(Nonce = Same as |V)

Nonce Counter Nonce Counter Nonce Counter
¢59bcf35... 00000000 ¢59bcf35... 00000001 ¢59bcf35... 00000002
OITTIITITIITTT (LI TITITTd (T
Key = | Block Cipher Key = | Block Cipher Key —= Block Cipher
Encryption Encryption Encryption
Plaintext - Plaintext - b Plaintext -
P1[IIIIIIII lllllllh}q PZIII ENNEREN NN l’f P3lllll LI lll‘f‘
IRERREARAREREEE ([HEEERARENENENAE ANERERRERNEREREN
Ciphertext Ciphertext Ciphertext
C, C, C,

Counter (CTR) mode encryption

CTR: Decryption

Nonce Counter Nonce Counter Nonce Counter
c59bcf35... 00000000 c59bcf35... 00000001 c59bcf35... 00000002
(INERRARENERRRNEN LITTITTTRTTITdT HEENERRENENNRNER
' ' '
Key = Block Cipher Key ——+» Block Cipher Key = Block Cipher
Encryption Encryption Encryption

Ciphertext —» _jL Clphenext — Ciphertext —» (|-
C1 COTITITITITTITT] ‘ C TTTTTITTITITT] C3 [TTTTTITTTIITITT
HEARRRRENANEREED ANERRARANARRENAD (HERRENENNENAN AN
Plaintext Plaintext Plaintext
P P, P,

Counter (CTR) mode decryption

Modern Symmetric-Key Encryption:

Stream Ciphers

Stream ciphers

Block cipher: fixed-size, stateless, requires
“modes” to securely process longer messages

Stream cipher: keeps state from processing past
message elements, can continually process new
elements

Common approach: “one-time pad on the cheap”:
— XORs the plaintext with some “random” bits

But: random bits # the key (as in one-time pad)

— Instead: output from cryptographically strong
pseudorandom number generator (PRNG)

Pseudorandom Number Generators
(PRNGSs)

Given a seed, outputs sequence of seemingly
random bits. (Keeps internal state.)

PRNG(seed) = “random” bits
Can output arbitrarily many random bits

Can a PRNG be truly random?

— No. For seed length s, it can only generate at most
2% distinct possible sequences.

A cryptographically strong PRNG “looks” truly
random to an attacker

— attacker cannot distinguish it from a random sequence

Building Stream Ciphers

Encryption, given key K and message M:
— Choose a random value |V
— E(M, K) = PRNG(K, IV)® M
Decryption, given key K, ciphertext C, and
initialization vector |V:
— D(C, K)=PRNG(K, IV)® C
Can encrypt message of any length
because PRNG can produce any number
of random bits

Using a PRNG to Build a
Stream Cipher

(Small) K, IV (Small) K, IV

L
PRNG PRNG

Alice ﬂ ﬂ

Keystream Keystream

M. i"" message
of plaintext

Okay, but how do we build a
Cryptographically Strong PRNG?

* Here’s a simple design for a PRNG that generates
128-bit pseudo-random numbers

— Only state needed is SEED and N (# of calls so far)

 PRNG(SEED) = { return AES-128¢¢p(++N) }

— i.e., encrypt counter of # of calls using SEED as key

— Because AES-128 acts like a random permutation of
128-bit bitstrings, even a tiny change in input such as
N vs. N+1 completely and unpredictably changes output

Building a Cryptographically
Strong PRNG, con't

* Here’s a version that incorporates an |V
— Only state needed is SEED and N (# of calls so far), plus
an |V
+ PRNG(SEED, V)

= { return AES-128¢cp(++N ® 1V) }

— i.e., encrypt (counter of # of calls, XOR'd with V) using
SEED as key

* In fact, let’'s compare using this PRNG to build a
stream cipher with the block cipher “CTR” mode ...

Using a PRNG to Build a
Stream Cipher

VP (++n) VP (++n)
ﬂ AES-128, AES-128,

Alice

2

ﬂ ﬂ Bob

Keystream Keystream

M.: i'" message
of plaintext

(Nonce = Same as |V)

Nonce Counter Nonce Counter Nonce Counter
¢59bcf35... 00000000 ¢59bcf35... 00000001 ¢59bcf35... 00000002

T EERARANARANERENR HERERENANRRERER

' ' '

K - K -
AES-128 d AES-128 - ‘ AES-128

Plaintext - p. Plaintext - p. Plaintext -
HERRRENEREREREED 2 I S I
AREENEERERRERER HREERERERERAERAR ANERRRNERRERER AN
Ciphertext Ciphertext Ciphertext
Cy C, Cs

Key =

Counter (CTR) mode encryption

C;: it message
of ciphertext

M;: i message E(M, K) and D(C,, K) are M,
of plaintext inverses for the same K

C;: it message
of ciphertext

M;: i message E(M, K¢) and D(C, K;) are
of plaintext inverses for particular K and K

C. i message C.

E(Mp KE) of ciphertext D(Ci, KD)

M i message E(M., K:) and D(C, Ky) are M;
of plamiext inverses for particular Kz and K

Public Key Cryptography

* Having two keys rather than one seems like a
step backwards ...

* ... However, what if knowing K¢ (and E and D)
doesn't allow Eve to infer K;?

 If Bob can generate a pair <K, Ky) that have this
property for E and D, then Bob can just publish K¢

for the world to see
— No need to pre-exchange keys with Alice!

)

ﬂ ‘
lice

G TS

¥y

C;: i message C,
of ciphertext

M;: i message E(M, K¢) and D(C, K;) are
of plaintext inverses for particular K and K

Public Key Cryptography, con't

For Eve, encryption function E(M.) is now fully
determined! Surely she can invertit... ?

E« needs to be a one-way function, such that
computing E,1(x) is computationally infractable ...

... Unless you have some additional knowledge
- le., Ky

Where can we get such a seemingly magic pair of
functions E along with D = E,1(x)?
— Let’s look at one such public-key approach: RSA

Number Theory Refresher: Efficient
Multiplication/Exponentitation

e If ‘@’ and ‘b’ have N bits each:

Can multiply them in O(N?) time
(actually, a bit faster)

Can exponentiate modulo p
(a®> mod p or b? mod p) in O(N3) time

« We're going to care about BIG integers (N=1000)

Number Theory Refresher:
Totients

¢(n) = totient of n
=#o0ofi,0 <i<n: iandn are relatively prime
¢(p) = p-1if p is a prime

@(p-q) = (p-1)(g-1) if p, q are distinct primes

 Euler’'s theorem:

Given ‘a’ relatively prime to n, a®™ =1 mod n

Finding BIG Primes Quickly

* Here’s a probabilistic algorithm:
1. Generate a random candidate prime p'
2. Generate random integera: 1<a<p'-1
3. Compute aP-Umod p'. If # 1, discard p', go to 1
4. Otherwise, go to 2, unless have made enough

iterations to have confidence p' “surely” must be prime

« Enough iterations: while 3 non-primes for which the equation in
Euler’s theorem almost always holds, they’re exceedingly rare

* Runs in O(N%) time for finding an N-bit prime

Putting it all together: RSA

. Generate random primes P, g
. Compute n =p-q
. Compute ¢(n) = (p-1)(g-1)

Important: if Eve sees nishe can't deduce @(n>
unless she can factor n into p and q

. Choose 2 <e < @(n), where e and @(n) are relatively prime
Could be something simple like e=3, if rel. prime.

. Public key K. ={ n, e }. Both are Well Known.
. Compute d = e mod ¢(n)

d is multiplicative inverse of e, modulo @(n)
easy to find if you know ¢(n)

(believed) HARD to comput@ don't know@
. Private key K, ={d }

