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Goals For Today 

•  General approaches (“styles”) to 
detecting attacks 

•  The fundamental problem of evasion 

•  Analyzing successful attacks: forensics 

•  (Operation of a modern HIDS/NIDS) 



Styles of Detection: Signature-Based 
•  Idea: look for activity that matches the structure of 

a known attack 
•  Example (from the freeware Snort NIDS): 

alert tcp $EXTERNAL_NET any -> $HOME_NET 
139 flow:to_server,established 

content:"|eb2f 5feb 4a5e 89fb 893e 89f2|" 
msg:"EXPLOIT x86 linux samba overflow" 
reference:bugtraq,1816 
reference:cve,CVE-1999-0811 
classtype:attempted-admin 

•  Can be at different semantic layers 
e.g.: IP/TCP header fields; packet payload; URLs 



Sample Higher-Layer Snort Signature 

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS  
                               $HTTP_PORTS 
   (msg:”ET Piranha default passwd attempt”;  
    flow:to_server,established;  
    uricontent:"/piranha/secure/control.php3”; 
    content:"Authorization\: Basic 
             cGlyYW5oYTp"; 
    reference:bugtraq,1148;  
    reference:cve,2000-0248;  
    reference:nessus,10381;  
    classtype:attempted-recon; 
    sid:2002331; rev:5;) 



Signature-Based Detection, con’t 
•  E.g. for FooCorp, search for “../../” or “/etc/passwd” 

•  What’s nice about this approach? 
–  Conceptually simple 
–  Takes care of known attacks (of which there are zillions) 
–  Easy to share signatures, build up libraries 

•  What’s problematic about this approach? 
–  Blind to novel attacks 
–  Might even miss variants of known attacks (“..///.//../”) 

•  Of which there are zillions 
–  Simpler versions look at low-level syntax, not semantics 

•  Can lead to weak power (either misses variants, or generates lots 
of false positives) 



Vulnerability Signatures 
•  Idea: don’t match on known attacks, match on known 

problems 
•  Example (also from Snort): 

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80  
uricontent: ".ida?"; nocase; dsize: > 239 
msg:"Web-IIS ISAPI .ida attempt" 
reference:bugtraq,1816 
reference:cve,CAN-2000-0071 
classtype:attempted-admin 

•  That is, match URIs that invoke *.ida?* (in any combination 
of lower/uppercase) with more than 239 bytes of payload 

•  This example detects any* attempt to exploit a particular 
buffer overflow in IIS web servers 
–  Used by the “Code Red” worm 
*  (Note, signature is not quite complete) 



Vulnerability Signatures, con’t 
•  What’s nice about this approach? 

– Conceptually fairly simple 
– Takes care of known attacks 
– Easy to share signatures, build up libraries 

– Can detect variants of known attacks 
– Much more concise than per-attack signatures 

•  What’s problematic? 
– Can’t detect novel attacks (new vulnerabilities) 
– Signatures can be hard to write / express 

•  Can’t just observe an attack that works … 
• … need to delve into how it works 

Benefits	of	a+ack	signatures	



Styles of Detection: Anomaly-Based 
•  Idea: attacks look peculiar. 
•  High-level approach: develop a model of normal 

behavior (say based on analyzing historical logs).  
Flag activity that deviates from it. 

•  FooCorp example: maybe look at distribution of 
characters in URL parameters, learn that some are 
rare and/or don’t occur repeatedly 
–  If we happen to learn that ‘.’s have this property, then 

could detect the attack even without knowing it exists 
•  Big benefit: potential detection of a wide range of 

attacks, including novel ones 



Anomaly Detection, con’t 
•  What’s problematic about this approach? 

– Can fail to detect known attacks 
– Can fail to detect novel attacks, if don’t happen 

to look peculiar along measured dimension 
– What happens if the historical data you train on 

includes attacks? 
– Base Rate Fallacy particularly acute: if 

prevalence of attacks is low, then you’re more 
often going to see benign outliers 

•  High FP rate 
•  OR: require such a stringent deviation from “normal” 

that most attacks are missed (high FN rate) 
Hard	to	make	work	well	-	not	widely	used	today	



Anomaly Detection in ML Terms 
•  In machine-learning terms, traditional anomaly 

detection corresponds to unsupervised one-class 
classification 
–  Known to be very challenging; only works if data has a 

well-defined natural cluster that algorithms can discover 
•  More powerful supervised techniques can work 

much better 
–  However #1: requires labels, which can be difficult to 

obtain 
–  However #2: Base Rate Fallacy can still be a big 

problem 
•  But for domains with plenty of “attacks”, such as detecting spam, 

can work well 
Somewhat	in	use	today	



Specification-Based Detection 
•  Idea: don’t learn what’s normal; specify what’s 

allowed 
•  FooCorp example: decide that all URL parameters 

sent to foocorp.com servers must have at most 
one ‘/’ in them 
–  Flag any arriving param with > 1 slash as an attack 

•  What’s nice about this approach? 
–  Can detect novel attacks 
–  Can have low false positives 

•  If FooCorp audits its web pages to make sure they comply  

•  What’s problematic about this approach? 
–  Expensive: lots of labor to derive specifications 

•  And keep them up to date as things change (“churn”) 



Styles of Detection: Behavioral 
•  Idea: don’t look for attacks, look for evidence of 

compromise 

•  FooCorp example: inspect all output web traffic for any lines 
that match a passwd file 

•  Example for monitoring user shell keystrokes: 
 unset	HISTFILE 

•  Example for catching code injection: look at sequences of 
system calls, flag any that prior analysis of a given program 
shows it can’t generate 
–  E.g., observe process executing read(), open(), write(), fork(), 

exec()    … 
–  … but there’s no code path in the (original) program that calls those 

in exactly that order! 
–  Note: no false positives! 



Behavioral-Based Detection, con’t 
•  What’s nice about this approach? 

–  Can detect a wide range of novel attacks 
–  Can have low false positives 

•  Depending on degree to which behavior is distinctive  
•  E.g., for system call profiling: no false positives! 

–  Can be cheap to implement 
•  E.g., system call profiling can be mechanized 

•  What’s problematic about this approach? 
–  Post facto detection: discovers that you definitely have a 

problem, w/ no opportunity to prevent it 
–  Brittle: for some behaviors, attacker can maybe avoid it 

•  Easy enough to not type “unset	HISTFILE” 
•  How could they evade system call profiling? 

–  Mimicry: adapt injected code to comply w/ allowed call sequences 



Styles of Detection: Honeypots 
•  Idea: deploy a sacrificial system that has no 

operational purpose 
•  Any access is by definition not authorized … 
•  … and thus an intruder 

–  (or some sort of mistake) 

•  Provides opportunity to: 
–  Identify/track intruders 
– Study what they’re up to 
– Divert them from legitimate targets 



Honeypots, con’t 
•  Real-world example: some hospitals enter fake 

records with celebrity names … 
– … to entrap staff who don’t respect confidentiality 

•  What’s nice about this approach? 
–  Can detect all sorts of new threats 



Honeypots, con’t 
•  Real-world example: some hospitals enter fake 

records with celebrity names … 
– … to entrap staff who don’t respect confidentiality 

•  What’s nice about this approach? 
–  Can detect all sorts of new threats 

•  What’s problematic about this approach? 
–  Can be difficult to lure the attacker 
–  Can be a lot of work to build a convincing environment 
–  Note: both of these issues matter less when deploying 

honeypots for automated attacks 
•  Because these have more predictable targeting & env. needs 
•  E.g. “spamtraps”: fake email addresses to catching spambots 





5 Minute Break 

 
Questions Before We Proceed? 



The Problem of Evasion 

•  For any detection approach, we need to consider 
how an adversary might (try to) elude it 
–  Note: even if the approach is evadable, it can still be 

useful to operate in practice 
–  But: if it’s very easy to evade, that’s especially 

worrisome (security by obscurity) 

•  Some evasions reflect incomplete analysis 
–  In our FooCorp example, hex escapes or “..////.//../” alias 
–  In principle, can deal with these with implementation 

care (make sure we fully understand the spec) 



The Problem of Evasion, con’t 
•  Some evasions exploit deviation from the spec 

–  E.g., double-escapes for SQL injection: 
    %25%32%37 ⇒ %27 ⇒  ' 

•  Some can exploit more fundamental ambiguities: 
–  Problem grows as monitoring viewpoint increasingly 

removed from ultimate endpoints 
•  Lack of end-to-end visibility 

•  Particularly acute for network monitoring 
•  Consider detecting occurrences of the (arbitrary) 

string “root” inside a network connection … 
–  We get a copy of each packet 
–  How hard can it be? 



Detecting “root”: Attempt #1 

•  Method: scan each packet for ‘r’, ‘o’, ‘o’, ‘t’ 
o  Perhaps using Boyer-Moore, Aho-Corasick, Bloom filters … 

 …….….root………..…………
1

Oops: TCP doesn’t preserve text boundaries

Are we done?

Packet

…….….ro
1

Packet #1

ot………..…………

2

Packet #2 Fix? 



Detecting “root”: Attempt #2 
•  Okay: remember match from end of previous packet 

Oops: IP doesn’t guarantee in-order arrival

ot………..…………

2

…….….ro
1?

- Now we’re managing state :-( 
  Are we done? 

…….….ro
1

Packet #1

When 2nd packet arrives, continue working on the match 

ot………..…………

Packet #2

2
+



•  Fix? 

•  We need to reassemble the entire TCP bytestream 
–  Match sequence numbers 
–  Buffer packets with later data (above a sequence “hole”) 

•  Issues? 
–  Potentially requires a lot of state 
–  Plus: attacker can cause us to exhaust state by sending 

lots of data above a sequence hole 

•  But at least we’re done, right? 

Detecting “root”: Attempt #3 



Full TCP Reassembly is Not Enough 
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•  Fix? 
•  Idea: NIDS can alert upon seeing a retransmission 

inconsistency, as surely it reflects someone up to no good 
•  This doesn’t work well in practice: TCP retransmissions 

broken in this fashion occur benignly in live traffic 
–  Fairly rare (< 1 conn. in 105 at LBL; but 350M conn./day!) 
–  But real evasions much rarer still (Base Rate Fallacy) 
⇒  This is a general problem with alerting on such ambiguities 

•  Idea: if NIDS sees such a connection, kill it 
–  Works for this case, since benign instance is already fatally broken 
–  But for other evasions, such actions have collateral damage 

•  Idea: rewrite traffic to remove ambiguities 
–  Works for network- & transport-layer ambiguities 
–  But must operate in-line and at line speed 

Inconsistent TCP Retransmissions 



Summary of Evasion Issues 

•  Evasions arise from uncertainty (or incompleteness) 
because detector must infer behavior/processing it 
can’t directly observe 
–  A general problem any time detection separate from 

potential target 

•  One general strategy: impose canonical form 
(“normalize”) 
–  E.g., rewrite URLs to expand/remove hex escapes  
–  E.g., enforce blog comments to only have certain HTML tags  

•  Another strategy: fix the basic observation problem 
–  E.g., monitor directly at end systems  


