
Detecting Attacks, Part 2 

CS 161: Computer Security 
Prof. Vern Paxson 

 
TAs: Paul Bramsen, Apoorva Dornadula, 

David Fifield, Mia Gil Epner, David Hahn, Warren He, 
Grant Ho, Frank Li, Nathan Malkin, Mitar Milutinovic, 

Rishabh Poddar, Rebecca Portnoff, Nate Wang 

https://inst.eecs.berkeley.edu/~cs161/ 
April 18, 2017 



Goals For Today 

•  General approaches (“styles”) to 
detecting attacks 

•  The fundamental problem of evasion 

•  Analyzing successful attacks: forensics 

•  (Operation of a modern HIDS/NIDS) 



Styles of Detection: Signature-Based 
•  Idea: look for activity that matches the structure of 

a known attack 
•  Example (from the freeware Snort NIDS): 

alert tcp $EXTERNAL_NET any -> $HOME_NET 
139 flow:to_server,established 

content:"|eb2f 5feb 4a5e 89fb 893e 89f2|" 
msg:"EXPLOIT x86 linux samba overflow" 
reference:bugtraq,1816 
reference:cve,CVE-1999-0811 
classtype:attempted-admin 

•  Can be at different semantic layers 
e.g.: IP/TCP header fields; packet payload; URLs 



Sample Higher-Layer Snort Signature 

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS  
                               $HTTP_PORTS 
   (msg:”ET Piranha default passwd attempt”;  
    flow:to_server,established;  
    uricontent:"/piranha/secure/control.php3”; 
    content:"Authorization\: Basic 
             cGlyYW5oYTp"; 
    reference:bugtraq,1148;  
    reference:cve,2000-0248;  
    reference:nessus,10381;  
    classtype:attempted-recon; 
    sid:2002331; rev:5;) 



Signature-Based Detection, con’t 
•  E.g. for FooCorp, search for “../../” or “/etc/passwd” 

•  What’s nice about this approach? 
–  Conceptually simple 
–  Takes care of known attacks (of which there are zillions) 
–  Easy to share signatures, build up libraries 

•  What’s problematic about this approach? 
–  Blind to novel attacks 
–  Might even miss variants of known attacks (“..///.//../”) 

•  Of which there are zillions 
–  Simpler versions look at low-level syntax, not semantics 

•  Can lead to weak power (either misses variants, or generates lots 
of false positives) 



Vulnerability Signatures 
•  Idea: don’t match on known attacks, match on known 

problems 
•  Example (also from Snort): 

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80  
uricontent: ".ida?"; nocase; dsize: > 239 
msg:"Web-IIS ISAPI .ida attempt" 
reference:bugtraq,1816 
reference:cve,CAN-2000-0071 
classtype:attempted-admin 

•  That is, match URIs that invoke *.ida?* (in any combination 
of lower/uppercase) with more than 239 bytes of payload 

•  This example detects any* attempt to exploit a particular 
buffer overflow in IIS web servers 
–  Used by the “Code Red” worm 
*  (Note, signature is not quite complete) 



Vulnerability Signatures, con’t 
•  What’s nice about this approach? 

– Conceptually fairly simple 
– Takes care of known attacks 
– Easy to share signatures, build up libraries 

– Can detect variants of known attacks 
– Much more concise than per-attack signatures 

•  What’s problematic? 
– Can’t detect novel attacks (new vulnerabilities) 
– Signatures can be hard to write / express 

•  Can’t just observe an attack that works … 
• … need to delve into how it works 

Benefits	of	a+ack	signatures	



Styles of Detection: Anomaly-Based 
•  Idea: attacks look peculiar. 
•  High-level approach: develop a model of normal 

behavior (say based on analyzing historical logs).  
Flag activity that deviates from it. 

•  FooCorp example: maybe look at distribution of 
characters in URL parameters, learn that some are 
rare and/or don’t occur repeatedly 
–  If we happen to learn that ‘.’s have this property, then 

could detect the attack even without knowing it exists 
•  Big benefit: potential detection of a wide range of 

attacks, including novel ones 



Anomaly Detection, con’t 
•  What’s problematic about this approach? 

– Can fail to detect known attacks 
– Can fail to detect novel attacks, if don’t happen 

to look peculiar along measured dimension 
– What happens if the historical data you train on 

includes attacks? 
– Base Rate Fallacy particularly acute: if 

prevalence of attacks is low, then you’re more 
often going to see benign outliers 

•  High FP rate 
•  OR: require such a stringent deviation from “normal” 

that most attacks are missed (high FN rate) 
Hard	to	make	work	well	-	not	widely	used	today	



Anomaly Detection in ML Terms 
•  In machine-learning terms, traditional anomaly 

detection corresponds to unsupervised one-class 
classification 
–  Known to be very challenging; only works if data has a 

well-defined natural cluster that algorithms can discover 
•  More powerful supervised techniques can work 

much better 
–  However #1: requires labels, which can be difficult to 

obtain 
–  However #2: Base Rate Fallacy can still be a big 

problem 
•  But for domains with plenty of “attacks”, such as detecting spam, 

can work well 
Somewhat	in	use	today	



Specification-Based Detection 
•  Idea: don’t learn what’s normal; specify what’s 

allowed 
•  FooCorp example: decide that all URL parameters 

sent to foocorp.com servers must have at most 
one ‘/’ in them 
–  Flag any arriving param with > 1 slash as an attack 

•  What’s nice about this approach? 
–  Can detect novel attacks 
–  Can have low false positives 

•  If FooCorp audits its web pages to make sure they comply  

•  What’s problematic about this approach? 
–  Expensive: lots of labor to derive specifications 

•  And keep them up to date as things change (“churn”) 



Styles of Detection: Behavioral 
•  Idea: don’t look for attacks, look for evidence of 

compromise 

•  FooCorp example: inspect all output web traffic for any lines 
that match a passwd file 

•  Example for monitoring user shell keystrokes: 
 unset	HISTFILE 

•  Example for catching code injection: look at sequences of 
system calls, flag any that prior analysis of a given program 
shows it can’t generate 
–  E.g., observe process executing read(), open(), write(), fork(), 

exec()    … 
–  … but there’s no code path in the (original) program that calls those 

in exactly that order! 
–  Note: no false positives! 



Behavioral-Based Detection, con’t 
•  What’s nice about this approach? 

–  Can detect a wide range of novel attacks 
–  Can have low false positives 

•  Depending on degree to which behavior is distinctive  
•  E.g., for system call profiling: no false positives! 

–  Can be cheap to implement 
•  E.g., system call profiling can be mechanized 

•  What’s problematic about this approach? 
–  Post facto detection: discovers that you definitely have a 

problem, w/ no opportunity to prevent it 
–  Brittle: for some behaviors, attacker can maybe avoid it 

•  Easy enough to not type “unset	HISTFILE” 
•  How could they evade system call profiling? 

–  Mimicry: adapt injected code to comply w/ allowed call sequences 



Styles of Detection: Honeypots 
•  Idea: deploy a sacrificial system that has no 

operational purpose 
•  Any access is by definition not authorized … 
•  … and thus an intruder 

–  (or some sort of mistake) 

•  Provides opportunity to: 
–  Identify/track intruders 
– Study what they’re up to 
– Divert them from legitimate targets 



Honeypots, con’t 
•  Real-world example: some hospitals enter fake 

records with celebrity names … 
– … to entrap staff who don’t respect confidentiality 

•  What’s nice about this approach? 
–  Can detect all sorts of new threats 



Honeypots, con’t 
•  Real-world example: some hospitals enter fake 

records with celebrity names … 
– … to entrap staff who don’t respect confidentiality 

•  What’s nice about this approach? 
–  Can detect all sorts of new threats 

•  What’s problematic about this approach? 
–  Can be difficult to lure the attacker 
–  Can be a lot of work to build a convincing environment 
–  Note: both of these issues matter less when deploying 

honeypots for automated attacks 
•  Because these have more predictable targeting & env. needs 
•  E.g. “spamtraps”: fake email addresses to catching spambots 





5 Minute Break 

 
Questions Before We Proceed? 



The Problem of Evasion 

•  For any detection approach, we need to consider 
how an adversary might (try to) elude it 
–  Note: even if the approach is evadable, it can still be 

useful to operate in practice 
–  But: if it’s very easy to evade, that’s especially 

worrisome (security by obscurity) 

•  Some evasions reflect incomplete analysis 
–  In our FooCorp example, hex escapes or “..////.//../” alias 
–  In principle, can deal with these with implementation 

care (make sure we fully understand the spec) 



The Problem of Evasion, con’t 
•  Some evasions exploit deviation from the spec 

–  E.g., double-escapes for SQL injection: 
    %25%32%37 ⇒ %27 ⇒  ' 

•  Some can exploit more fundamental ambiguities: 
–  Problem grows as monitoring viewpoint increasingly 

removed from ultimate endpoints 
•  Lack of end-to-end visibility 

•  Particularly acute for network monitoring 
•  Consider detecting occurrences of the (arbitrary) 

string “root” inside a network connection … 
–  We get a copy of each packet 
–  How hard can it be? 



Detecting “root”: Attempt #1 

•  Method: scan each packet for ‘r’, ‘o’, ‘o’, ‘t’ 
o  Perhaps using Boyer-Moore, Aho-Corasick, Bloom filters … 

 …….….root………..…………
1

Oops: TCP doesn’t preserve text boundaries

Are we done?

Packet

…….….ro
1

Packet #1

ot………..…………

2

Packet #2 Fix? 



Detecting “root”: Attempt #2 
•  Okay: remember match from end of previous packet 

Oops: IP doesn’t guarantee in-order arrival

ot………..…………

2

…….….ro
1?

- Now we’re managing state :-( 
  Are we done? 

…….….ro
1

Packet #1

When 2nd packet arrives, continue working on the match 

ot………..…………

Packet #2

2
+



•  Fix? 

•  We need to reassemble the entire TCP bytestream 
–  Match sequence numbers 
–  Buffer packets with later data (above a sequence “hole”) 

•  Issues? 
–  Potentially requires a lot of state 
–  Plus: attacker can cause us to exhaust state by sending 

lots of data above a sequence hole 

•  But at least we’re done, right? 

Detecting “root”: Attempt #3 



Full TCP Reassembly is Not Enough 

NIDS 

r r 
seq=1, TTL=22 

n 
seq=1, TTL=16 

X 

o o 
seq=2, TTL=22 

i 
seq=2, TTL=16 

X 

o o 
seq=3, TTL=22 

c 
seq=3, TTL=16 

X 

t t 
seq=4, TTL=22 

e 
seq=4, TTL=16 

X 

Se
nd

er
 /

 A
tt

ac
ke

r 
Receiver 

r~~~ 

~~~~ r~~~ ro~~ roo~ root 

~~~~ 
r~~~? 

n~~~? 

ri~~? 

ni~~? 

ri~~? ro~~? 

ni~~? no~~? 
ric~? roc~? rio~? roo~? 
nic~? noc~? nio~? 
noo~? 

rice? roce? rict? roct? 
riot? root? rioe? rooe? 
nice? noce? nict? noct? 
niot? noot? nioe? nooe?  

Packet discarded in transit due 
to TTL hop count expiring 

TTL field in IP header 
specifies maximum 

forwarding hop count 

Assume the Receiver 
is 20 hops away 

Assume NIDS is 15 hops away 



•  Fix? 
•  Idea: NIDS can alert upon seeing a retransmission 

inconsistency, as surely it reflects someone up to no good 
•  This doesn’t work well in practice: TCP retransmissions 

broken in this fashion occur benignly in live traffic 
–  Fairly rare (< 1 conn. in 105 at LBL; but 350M conn./day!) 
–  But real evasions much rarer still (Base Rate Fallacy) 
⇒  This is a general problem with alerting on such ambiguities 

•  Idea: if NIDS sees such a connection, kill it 
–  Works for this case, since benign instance is already fatally broken 
–  But for other evasions, such actions have collateral damage 

•  Idea: rewrite traffic to remove ambiguities 
–  Works for network- & transport-layer ambiguities 
–  But must operate in-line and at line speed 

Inconsistent TCP Retransmissions 



Summary of Evasion Issues 

•  Evasions arise from uncertainty (or incompleteness) 
because detector must infer behavior/processing it 
can’t directly observe 
–  A general problem any time detection separate from 

potential target 

•  One general strategy: impose canonical form 
(“normalize”) 
–  E.g., rewrite URLs to expand/remove hex escapes  
–  E.g., enforce blog comments to only have certain HTML tags  

•  Another strategy: fix the basic observation problem 
–  E.g., monitor directly at end systems  


