Detecting Attacks, Part 2

CS 161: Computer Security

Prof. Vern Paxson

TAs: Paul Bramsen, Apoorva Dornadula,
David Fifield, Mia Gil Epner, David Hahn, Warren He,
Grant Ho, Frank Li, Nathan Malkin, Mitar Milutinovic,

Rishabh Poddar, Rebecca Portnoff, Nate Wang

https://inst.eecs.berkeley.edu/~cs161/

Goals For Today

 General approaches (“'styles”) to
detecting attacks

* The fundamental problem of evasion
* Analyzing successful attacks: forensics

* (Operation of a modern HIDS/NIDS)

Styles of Detection: Signature-Based

 |dea: look for activity that matches the structure of
a
« Example (from the freeware Snort NIDS):

alert tcp $EXTERNAL_NET any -> $HOME_NET
139 flow:to server,established

content:" |eb2f 5feb 4a5e 89fb 893e 89f2|"
msqg: "EXPLOIT x86 linux samba overflow"
reference:bugtraq,1816
reference:cve,CVE-1999-0811
classtype:attempted-admin

» Can be at different semantic layers
e.g.: IP/TCP header fields; packet payload; URLs

Sample Higher-Layer Snort Signature

alert tcp $EXTERNAL;NET any -> $HTTE_SERVERS
$HTTB_PORTS
(msg:”ET Piranha default passwd attempt”;
flow:to server,established;
uricontent:"/piranha/secure/control.php3”
content:"Authorization\: Basic
cGlyYWSoYTp";

reference:bugtraq,1148;
reference:cve,2000-0248;
reference:nessus,10381;
classtype:attempted-recon;
s1id:2002331; rev:5;)

N

Signhature-Based Detection, con’t

 E.g. for FooCorp, search for “../../"” or “/etc/passwd”

* What's nice about this approach?
— Conceptually simple
— Takes care of known attacks (of which there are zillions)
— Easy to share signatures, build up libraries

 What's problematic about this approach?
— Blind to novel attacks
— Might even miss variants of known attacks (“..///.//..I")
« Of which there are zillions

— Simpler versions look at low-level syntax, not

» Can lead to weak power (either misses variants, or generates lots
of false positives)

Vulnerability Signatures

|dea: don’t match on known attacks, match on

Example (also from Snort):

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80
uricontent: ".ida?"; nocase; dsize: > 239
msg:'"Web-IIS ISAPI .ida attempt"”
reference:bugtraq, 1816
reference:cve,CAN-2000-0071
classtype:attempted-admin

That is, match URIs that invoke *.ida”?* (in any combination
of lower/uppercase) with more than 239 bytes of payload

This example detects any™ attempt to exploit a particular

buffer overflow in IIS web servers

— Used by the “Code Red” worm
* (Note, signature is not quite complete)

Vulnerability Signatures, con’t

* What's nice about this approach?
— Conceptually fairly simple | Benefits of attack signatures
— Takes care of known attacks
— Easy to share signatures, build up libraries
— Can detect variants of known attacks
— Much more concise than per-attack signatures

* What's problematic?
— Can’t detect novel attacks (new vulnerabilities)

— Signatures can be hard to write / express
« Can’t just observe an attack that works ...
* ... heed to delve into how it works

Styles of Detection: Anomaly-Based

* |dea: attacks look peculi-r.

* High-level approach: develop a model of
behavior (say based on analyzing historical logs).
Flag activity that deviates from it.

« FooCorp example: maybe look at distribution of
characters in URL parameters, learn that some are
rare and/or don’t occur repeatedly
— If we happen to learn that “." s have this property, then

could detect the attack even without knowing it exists

* Big benefit: potential detection of a wide range of
attacks,

Anomaly Detection, con’t

* What's problematic about this approach?
— Can fail to detect known attacks

— Can fail to detect novel attacks, if don’t happen
to look peculiar along measured dimension

— What happens if the historical data you train on
iIncludes attacks?

- particularly acute: if
prevalence of attacks is low, then you're more
often going to see benign outliers

« High FP rate

« OR: require such a stringent deviation from “normal”
that most attacks are missed (high FN rate)

Hard to make work well - not widely used today

Anomaly Detection in ML Terms

* |In machine-learning terms, traditional anomaly
detection corresponds to unsupervised one-class
classification
— Known to be very challenging; only works if data has a

well-defined natural cluster that algorithms can discover

* More powerful supervised techniques can work
much better

— However #1: requires labels, which can be difficult to
obtain

— However #2: Base Rate Fallacy can still be a big
problem

« But for domains with plenty of “attacks”, such as detecting spam,
can work well

Somewhat in use today

Specification-Based Detection

ldea: don't learn what's normal; specify what's
allowed

FooCorp example: decide that all URL parameters
sent to foocorp.com servers must have at most
one ‘/’ in them

— Flag any arriving param with > 1 slash as an attack
What's nice about this approach?

— Can detect novel attacks

— Can have low false positives
 If FooCorp audits its web pages to make sure they comply

What's problematic about this approach?

— Expensive: lots of labor to derive specifications
« And keep them up to date as things change (“churn”™)

Styles of Detection: Behavioral

|dea: don’t look for attacks, look for evidence of
compromise

FooCorp example: inspect all output web traffic for any lines
that match a passwd file

Example for monitoring user shell keystrokes:
unset HISTFILE

Example for catching . look at sequences of
system calls, flag any that prior analysis of a given program
shows it can’t generate

— E.g., observe process executing read(), open(), write(), fork(),
exec()

— ... but there’s no code path in the (original) program that calls those
in exactly that order!

— Note: no false positives!

Behavioral-Based Detection, con’t

* What's nice about this approach?
— Can detect a wide range of novel attacks

— Can have low false positives
« Depending on degree to which behavior is distinctive
« E.g., for system call profiling:

— Can be cheap to implement
« E.g., system call profiling can be mechanized

 What's problematic about this approach?

— Post facto detection: discovers that you definitely have a
problem, w/ no opportunity to prevent it

— Brittle: for some behaviors, attacker can maybe avoid it
« Easy enough to not type “unset HISTFILE”

* How could they evade system call profiling?
— Mimicry: adapt injected code to comply w/ allowed call sequences

Styles of Detection: Honeypots

ldea: deploy a that has no
operational purpose

Any access is by definition not authorized ...

... and thus an intruder
— (or some sort of mistake)

Provides opportunity to:
— ldentify/track intruders

— Study what they're up to
— Divert them from legitimate targets

Honeypots, con’t

« Real-world example: some hospitals enter fake
records with celebrity names ...

— ... to entrap staff who don’t respect confidentiality

* What's nice about this approach?
— Can detect

Honeypots, con’t

« Real-world example: some hospitals enter fake
records with celebrity names ...
— ... to entrap staff who don'’t respect confidentiality

 What's nice about this approach?
— Can detect all sorts of new threats

 What's problematic about this approach?
— Can be difficult to lure the attacker
— Can be a lot of work to build a convincing environment

— Note: both of these issues matter less when deploying
honeypots for automated attacks

« Because these have more predictable targeting & env. needs

« E.g. “spamtraps”: fake email addresses to catching spambots

‘l
Joe Stewart 2 Follow
joestewart7/1

Future of host IDS: Just a Bitcoin wallet with
small amount of BTC. When emptied it

means time to wipe/reinstall + change all
your PWSs.

RETWEETS FAVORITES

3 o GORALEBES

12:10 PM - 21 Nov 2013

5 Minute Break

Questions Before We Proceed?

The Problem of Evasion

* For any detection approach, we need to consider
how an adversary might (try to) elude it

— Note: even if the approach is evadable, it can still be
useful to operate in practice

— But: if it's very easy to evade, that's especially
worrisome (security by obscurity)

* Some evasions reflect incomplete analysis
— In our FooCorp example, hex escapes or “..////./]..I" alias

— In principle, can deal with these with implementation
care (make sure we fully understand the spec)

The Problem of Evasion, con’t

Some evasions exploit deviation from the spec

— E.g., double-escapes for SQL injection:
%25%32%37 = %27 = '

Some can exploit more fundamental ambiguities:

— Problem grows as monitoring viewpoint increasingly
removed from ultimate endpoints
 Lack of end-to-end visibility

Particularly acute for network monitoring

Consider detecting occurrences of the (arbitrary)
string “root” inside a network connection ...

— We get a copy of each packet
— How hard can it be?

Detecting “root™: Attempt #1

Method: scan each packet for r', ‘'o’, ‘o', ‘t

Perhaps using Boyer-Moore, Aho-Corasick, Bloom filters ...

Packet !

lllllllllllrootlllllllllllllllllllllll

Are we done?

1 2

Illllllllllro otlllllllllllllllllllllll

Packet #1 Packet #2 Fix?

Detecting “root”: Attempt #2

- Okay: remember match from end of previous packet

1 2
Illllllllllro otl"lllllllllllllllllllll
Packet #1 Packet #2

When 2nd packet arrives, continue working on the match

- Now we’re managing state :-(
Are we done?

Oops: IP doesn’t guarantee in-order arrival

2 |

otllllllllllllllllll A ! Illllllro

Detecting “root”: Attempt #3

Fix?

We need to reassemble the entire TCP bytestream

— Match sequence numbers
— Buffer packets with later data (above a sequence “hole™)

Issues”?
— Potentially requires a lot of state

— Plus: attacker can cause us to exhaust state by sending
lots of data above a sequence hole

But at least we're done, right?

Full TCP Reassembly is Not Enough
- seq=@ =-

e

- seq=1®

——————

seq=2, TTL=16

- seq=2, TTL=22
seq=3, TTL=16

- seq=3, TTL=22
- seq=4, TTL=22

- seq=4, TTL=16 4

¥

(. .)
rice? roce? rict? roct?

- Prumugw
nice? ppsg@ipm2hoct?

\nintr?'moot? nioe? nooe?
NIDS ~/ Assume NIDS is 15 hops away -

X

JOAI9O9Y

Sender / Attacker

.-..-...-..-.....-..... eI IO LI

X

Inconsistent TCP Retransmissions

o Fix?
« ldea: NIDS can alert upon seeing a retransmission
iInconsistency, as surely it reflects someone up to no good

* This doesn’t work well in practice: TCP retransmissions
broken in this fashion occur benignly in live traffic
— Fairly rare (< 1 conn. in 10° at LBL; but 350M conn./day!)
— But real evasions much rarer still (Base Rate Fallacy)
=> This is a general problem with alerting on such ambiguities

* Idea: if NIDS sees such a connection, kill it
— Works for this case, since benign instance is already fatally broken
— But for other evasions, such actions have collateral damage
 |dea: rewrite traffic to remove ambiguities

— Works for network- & transport-layer ambiguities
— But must operate in-line and at line speed

Summary of Evasion Issues

« Evasions arise from uncertainty (or incompleteness)
because detector must infer behavior/processing it

can’t directly observe

— A general problem any time detection separate from
potential target

* One general strategy: impose canonical form
(“normalize”)
— E.g., rewrite URLs to expand/remove hex escapes
— E.g., enforce blog comments to only have certain HTML tags

* Another strategy: fix the basic observation problem
— E.g., monitor at end systems

