
Denial-of-Service (DoS)

CS 161: Computer Security
Prof. Vern Paxson

TAs: Paul Bramsen, Apoorva Dornadula,

David Fifield, Mia Gil Epner, David Hahn, Warren He,
Grant Ho, Frank Li, Nathan Malkin, Mitar Milutinovic,

Rishabh Poddar, Rebecca Portnoff, Nate Wang

http://inst.eecs.berkeley.edu/~cs161/
April 4, 2017

General Communication Security Goals: CIA

•  Confidentiality
–  No one can read our data / communication unless we

want them to
•  Integrity

–  No one can manipulate our data / processing /
communication unless we want them to

•  Authentication
–  We can determine who created a given message / data

General Communication Security Goals: CIAA

•  Confidentiality
–  No one can read our data / communication unless we

want them to
•  Integrity

–  No one can manipulate our data / processing /
communication unless we want them to

•  Authentication
–  We can determine who created a given message / data

•  Availability
–  We can access our data / conduct our processing / use

our communication capabilities when we want to

Attacks on Availability

•  Denial-of-Service (DoS, or “doss”): keeping
someone from using a computing service

•  How broad is this sort of threat?
–  Very: huge attack surface

•  We do though need to consider our threat model …
–  What might motivate a DoS attack?

Motivations for DoS

•  Showing off / entertainment / ego
•  Competitive advantage

– Maybe commercial, maybe just to win
•  Vendetta / denial-of-money
•  Extortion
•  Impair defenses
•  Political statements
•  Political manipulation
•  Warfare

Attacks on Availability

•  Denial-of-Service (DoS, or “doss”): keeping
someone from using a computing service

•  How broad is this sort of threat?
–  Very: huge attack surface

•  We do though need to consider our threat model …
–  What might motivate a DoS attack?

•  Two basic approaches available to an attacker:
–  Deny service via a program flaw (“*NULL”)

•  E.g., supply an input that crashes a server
•  E.g., fool a system into shutting down

–  Deny service via resource exhaustion (“while(1);”)
•  E.g., consume CPU, memory, disk, network

DoS Defense in General Terms
•  Defending against program flaws requires:

–  Careful coding/testing/review
–  Careful authentication

•  Don’t obey shut-down orders from imposters
–  Consideration of behavior of defense mechanisms

•  E.g. buffer overflow detector that when triggered halts
execution to prevent code injection ⇒ denial-of-service

•  Defending resources from exhaustion can be
really hard. Requires:
–  Isolation mechanisms

•  Keep adversary’s consumption from affecting others
–  Reliable identification of different users

•  Know who the adversary is in the first place!

DoS & Operating Systems
•  How could you DoS a multi-user Unix system on which

you have a login?
–  #	rm	-rf	/

•  (if you have root - but then just “halt” works well!)
–  char	buf[1024];	

int	f	=	open("/tmp/junk");		
while	(1)	write(f,	buf,	sizeof(buf));	

•  Gobble up all the disk space!	
–  while	(1)	fork();

•  Create a zillion processes!
–  Create zillions of files, keep opening, reading, writing, deleting

•  Thrash the disk
–  … doubtless many more

•  Defenses?
–  Isolate users / impose quotas

5 Minute Break

Questions Before We Proceed?

DoS & Networks

•  How could you DoS a target’s Internet access?
–  Send a zillion packets at them
–  Internet lacks isolation between traffic of different

users!
•  What resources does attacker need to pull this

off?
–  At least as much sending capacity (“bandwidth”) as

the bottleneck link of the target’s Internet connection
•  Attacker sends maximum-sized packets

–  Or: overwhelm the rate at which the bottleneck
router can process packets

•  Attacker sends minimum-sized packets!
–  (in order to maximize the packet arrival rate)

Defending Against Network DoS

•  Suppose an attacker has access to a beefy system with
high-speed Internet access (a “big pipe”).

•  They pump out packets towards the target at a very
high rate.

•  What might the target do to defend against the
onslaught?

–  Install a network filter to discard any packets that arrive with
attacker's IP address as their source

•  E.g., drop * 66.31.1.37:* -> *:*
•  Or it can leverage any other packet pattern in the flooding traffic

that’s not in benign traffic
–  Filter = isolation mechanism
–  Attacker’s IP address = means of identifying misbehaving user

Filtering Sounds Pretty Easy …

•  … but it’s not. What steps can the attacker take to
defeat the filtering?
–  Make traffic appear as though it’s from many hosts

•  Spoof the source address so it can’t be used to filter
–  Just pick a random 32-bit number of each packet sent

•  How does a defender filter this?
–  They don’t! (Unless the traffic has some sort of identifying quirk)
–  Best they can hope for is that operators around the world

implement anti-spoofing mechanisms (today about 1/3rd do nothing)

Filtering Sounds Pretty Easy …

•  … but it’s not. What steps can the attacker take to
defeat the filtering?
–  Make traffic appear as though it’s from many hosts

•  Spoof the source address so it can’t be used to filter
–  Just pick a random 32-bit number of each packet sent

•  How does a defender filter this?
–  They don’t! (Unless the traffic has some sort of identifying quirk)
–  Best they can hope for is that operators around the world

implement anti-spoofing mechanisms (today about 1/3rd do nothing)

–  Use many hosts to send traffic rather than just one
•  Distributed Denial-of-Service = DDoS (“dee-doss”)
•  Requires defender to install complex filters
•  How many hosts are “enough” for the attacker?

–  Today they are very cheap to acquire … :-(

Oct	2016:	1.2	Tbps	

It’s Not A “Level Playing Field”

•  When defending resources from exhaustion,
need to beware of asymmetries, where
attackers can consume victim resources with
little comparable effort
–  Makes DoS easier to launch
–  Defense costs much more than attack

•  Particularly dangerous form of asymmetry:
amplification
–  Attacker leverages system’s own structure to pump

up the load they induce on a resource

Amplification Vector: DNS / UDP
•  Consider DNS lookups:

–  Reply is generally much bigger than request
•  Since it includes a copy of the reply, plus answers etc.

⇒  Attacker spoofs request seemingly from the target
•  Small attacker packet yields large flooding packet
•  Doesn’t increase # of packets, but total byte volume

–  Works for other request/response protocols too
•  Note #1: attacks involve blind spoofing

–  So for network-layer flooding, generally only works
for UDP-based protocols (can’t establish TCP conn.)

•  Note #2: victim doesn’t see spoofed source
addresses
–  Addresses are those of actual intermediary systems

Transport-Level Denial-of-Service
• Recall TCP’s 3-way connection establishment

handshake
– Goal: agree on initial sequence numbers

• So a single SYN from an attacker suffices to force
the server to spend some memory

Client (initiator)

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

Server creates state
associated with
connection here
(buffers, timers,
counters) Attacker doesn’t

even need to
send this ack

TCP SYN Flooding
•  Attacker targets memory rather than network

capacity
•  Every (unique) SYN that the attacker sends burdens

the target
–  Potentially cheaper attack than acquiring tons of bots

•  What should target do when it has no more memory
for a new connection?

•  No good answer!
–  Refuse new connection?

•  Legit new users can’t access service

–  Evict old connections to make room?
•  Legit old users get kicked off

TCP SYN Flooding, con’t

•  How can the target defend itself?

•  Approach #1: make sure they have
tons of memory!

– How much is enough?
– Depends on resources attacker can

bring to bear (threat model)
•  Which might be hard to know

TCP SYN Flooding, con’t
• Approach #2: identify bad actors & refuse their

connections
– Hard because only way to identify them is based on IP

address
•  We can’t for example require them to send a password because

doing so requires we have an established connection!

– For a public Internet service, who knows which
addresses customers might come from?

– Plus: attacker can spoof addresses since they don’t
need to complete TCP 3-way handshake

• Approach #3: don’t keep state! (“SYN cookies”;
only works for spoofed SYN flooding)

SYN Flooding Defense: Idealized

Client (initiator)

SYN, SeqNum = x

S+A, SeqNum = y, Ack = x + 1, <State>

ACK, Ack = y + 1, <State>

Server

• Server: when SYN arrives, rather than keeping
state locally, send critical state to the client …

• Client needs to return the critical state in order to
established connection

Server only saves
state here

Do not save state
here; give to client

SYN Flooding Defense: Idealized

Client (initiator)

SYN, SeqNum = x

S+A, SeqNum = y, Ack = x + 1, <State>

ACK, Ack = y + 1, <State>

Server

• Server: when SYN arrives, rather than keeping
state locally, send critical state to the client …

• Client needs to return the critical state in order to
established connection

Server only saves
state here

Do not save state
here; give to client

Problem: the world isn’t so ideal!

TCP doesn’t include an easy way to
add a new <State> field like this.

Is there any way to get the same
functionality without having to
change TCP clients?

Practical Defense: SYN Cookies

Client (initiator)

SYN, SeqNum = x

SYN and ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

• Server: when SYN arrives, encode critical state
entirely within SYN-ACK’s sequence # y !
– y = encoding of necessary state, using server secret

• When ACK of SYN-ACK arrives, server only
creates state if value of y from it agrees w/ secret

Server only creates
state here if y validates

Do not create
state here

Instead, encode it here

Practical Defense: SYN Cookies

Client (initiator)

SYN, SeqNum = x

SYN and ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

• Server: when SYN arrives, encode critical state
entirely within SYN-ACK’s sequence # y !
– y = encoding of necessary state, using server secret

• When ACK of SYN-ACK arrives, server only
creates state if value of y from it agrees w/ secret

Server only creates
state here if y validates

	cookie	y	=	<t,	m,	S>	
								t	=	5-bit	<mestamp	that	advances	every	64	seconds	
								m	=	3	bits	for	encoding	TCP	op<ons	
								S	=	boIom	24	bits	of	SHA-1(4-tuple,	t,	server	secret)	

