Integrity and Authentication

CS 161: Computer Security

Prof. Vern Paxson

TAs: Paul Bramsen, Apoorva Dornadula,
David Fifield, Mia Gil Epner, David Hahn, Warren He,
Grant Ho, Frank Li, Nathan Malkin, Mitar Milutinovic,

Rishabh Poddar, Rebecca Portnoff, Nate Wang

http://inst.eecs.berkeley.edu/~cs161/

{) .

C;: it message
of ciphertext

Mi: i message E(M., Kc) and D(C, Ky) are M;
of plaintext inyerses for particular Kz and K

RSA Public-Key Encryption

. Generate random primes p, q

. Compute n =p-q

. Compute o@(n) = (p-1)(g-1)

Important: if Eve sees n;_she can’'t deduce @(n)
unless she can factor n into p and g

. Choose 2 <e < @(n), where e and @(n) are relatively prime
Could be something simple like e=3, if rel. prime.

. Public key K¢ ={ n, e }. Both are Well Known.
. Compute d = e' mod ¢(n)
d is multiplicative inverse of e, modulo ¢@(n)
easy to find if you know ¢(n)
(believed) HARD to compute if you don’t know p, g
. Private key K, ={d }

RSA Encryption/Decryption

 Let M be a message interpreted as an unsigned
integer with M <n
(We’ll deal with M =2 n in a minute ...)

* E(M, KE) = E{n, e}(M)

* D(C, Kp) =Dy(C) = C¥mod n
= (M®)d mod n
= Me9mod n
= (Me9-1)-M mod n

RSA Encryption/Decryption, con't

« So we have: D(C, Ky) = (M®d1)-M mod n
* Now recall that d is the multiplicative inverse of e,
modulo ¢(n), and thus:
e-d =1 mod ¢(n) (by definition)
e-d-1=k-o(n) for some Kk
« Therefore D(C, Kj) = (M&91)-M mod n
= (Mke()-M mod n
= [(M®(M)k]-M mod n
= (1%)-M mod n by Euler’s Theorem
=M modn=M

(believed) Eve can recover M from C iff Eve can factor n=p-q

Some Considerations for
Public-Key Encryption

e Suppose Eve knows message is one of “Buy!” or
“Sell”. Problem?

— Eve can just try encrypting each using {n, e} to see which
vields the observed ciphertext
e C=(“Buy!”)® mod n? C=(“Sell’)® mod n?
— Solution: encrypt Encode(M), where Encode adds a
random |V (and also adjusts M for some corner-cases that
are easy to invert)

. is well-known, easy to invert

Some Considerations for
Public-Key Encryption, con’t

e WhatifM>n??

— Decryption D(C, K;) = (M&%1)-M mod n = can’t recover M

e Solution: use Public-Key encryption to encrypt a
random AES key K*; encrypt M using AES(M, K*)

— Indeed, this is how public-key encryption is routinely used —
because public key operations so much slower than block cipher
operations

Integrity & Message Authentication

Integrity and Authentication

Integrity: Bob can confirm that what he’s received is exactly
the message M that was originally sent

Authentication: Bob can confirm that what he’s received
was indeed generated by Alice

Reminder: for either, confidentiality may-or-may-not matter
— E.g. conf. not needed when Mozilla distributes a new Firefox binary

Encryption Does Not Provide Integrity

* Simple example: Consider a stream cipher SC, that uses
a cryptographically strong sequence of pseudo-random
bytes, R..

— Split message M into plaintext bytes P.. C. =P, ® R,

Using a PRNG to Build a
Stream Cipher

(Small) K, IV (Small) K, IV

L
PRNG PRNG

Alice ﬂ ﬂ

Keystream R, Keystream R,

M. i'" message
of plaintext

Encryption Does Not Provide Integrity

* Simple example: Consider a stream cipher SC, that uses

a cryptographically strong sequence of pseudo-random
bytes, R..

— Split message M into plaintext bytes P.. C. =P, ® R,

e Suppose Mallory knows that Alice sends to Bob “Pay
Mal $100”. Mallory intercepts corresponding C, IV

. £

Mallory the Manipulator

* Mallory is an active attacker
— Can introduce new messages (ciphertext)
— Can “replay” previous ciphertexts
— Can cause messages to be reordered or discarded

A “Man in the Middle” (MITM) attacker
— Can be much more powerful than just eavesdropping

. £

Encryption Does Not Provide Integrity

* Simple example: Consider a stream cipher SC, that uses
a cryptographically strong sequence of pseudo-random
bytes, R..

— Split message M into plaintext bytes P.. C. =P, ® R,

e Suppose Mallory knows that Alice sends to Bob “Pay
Mal $100”. Mallory intercepts corresponding C, IV
— M = “Pay Mal $100”. C = “r4ZC#jj8qThM”

— Myg.1,="100" Cyy 1,=“ThM"
=7

_ R10..12‘ . q

Encryption Does Not Provide Integrity

Rig.12= ?

Mallory computes
B =(“100” @ “999”) & Cyy 1,
— (uloon (_D ((999;;) C_B llThM”
= (“100” & “999”) ® (“100” @ Ry 1)
=(“999” @ Ry, ;,) @ (“100” B “100”)
=“999” ® Ry 1,

Mallory constructs C' = “r4ZC#jj8q[.5,55". Sends it and IV to Bob.

Bob decrypts. SC, with IV yields same R..
M' = “Pay Mal $999” ... even though Mallory doesn’t know K

More general attack: Mallory recovers all of R, = C. @ M.
— Now can construct valid C' for any desired M'via C'. =R, & M',

Integrity and Authentication

Integrity: Bob can confirm that what he’s received is exactly
the message M that was originally sent

Authentication: Bob can confirm that what he’s received
was indeed generated by Alice

Reminder: for either, confidentiality may-or-may-not matter
— E.g. conf. not needed when Mozilla distributes a new Firefox binary
Approach using symmetric-key cryptography:
— Integrity via MIACs (which use a shared secret key K)
— Authentication arises due to confidence that only Alice & Bob have K

Approach using public-key cryptography:

— “Digital signatures” provide both integrity & authentication together

Key building block: cryptographically strong hash functions

Hash Functions

* Properties
— Variable input size
— Fixed output size (e.g., 512 bits)
— Efficient to compute
— Pseudo-random (mixes up input extremely well)

* Provides a “fingerprint” of a document

— E.g. “shasum -a 256 <exams/mt1-solutions.pdf”
prints
0843b3802601c848f73ccb5013afa2d5c4d424a6ef
477890ebf8db9bcaf7d13d

Cryptographically Strong Hash Functions

e A collision occurs if x2y but Hash(x) = Hash(y)
— Since input size > output size, collisions do happen

* Acryptographically strong Hash(x) provides
three properties:
1. One-way: h = Hash(x) easy to compute, but not to
invert. (Vivid image: Hash(cow) = hamburger ==
* Intractable to find any x' s.t. Hash(x') = h, for a given h
* Also termed “preimage resistant”

Cryptographically Strong Hash Functions

* The other two properties of a cryptographically
strong Hash(x):
— Second preimage resistant: given x, intractable to find
X' s.t. Hash(x) = Hash(x')
— Collision resistant: intractable to find any x, y s.t.
Hash(x) = Hash(y)

* Collision resistant = Second preimage resistant

— We consider them separately because given Hash
might differ in how well it resists each

— Also, the Birthday Paradox means that for n-bit Hash,
finding x-y pair takes only = 2"/2 pairs
* Vs. potentially 2" tries for x': Hash(x) = Hash(x') for given x

Cryptographically Strong Hash Functions,
con’t

 Some contemporary hash functions
— MD5: 128 bits broken — lack of collision resistance
— SHA-1: 160 bits broken (as of last week!)
— SHA-256: 256 bits at least not currently broken

* Provide a handy way to unambiguously refer to large
documents
— If hash can be securely communicated, provides integrity

* E.g. Mozilla securely publishes SHA-256(new FF binary)

 Anyone who fetches binary can use “cat binary | shasum -a 256”
to confirm it’s the right one, untampered

* Not enough by themselves for integrity, since functions are
completely known — Mallory can just compute revised hash
value to go with altered message

Message Authentication Codes (MACs)

 Symmetric-key approach for integrity
— Uses a shared (secret) key

* Goal: when Bob receives a message, can confidently
determine it hasn’t been altered

— In addition, whomever sent it must have possessed
(= message authentication)

* Conceptual approach:
— Alice sends {M, T} to Bob, with tag T = F(K, M)
* Note, M could instead be C = E,.(M), but not required
— When Bob receives {M', T'}, Bob checks whether T' = F(K, M")

* If so, Bob concludes message untampered, came from Alice
* |f not, Bob discards message as tampered/corrupted

Requirements for Secure MAC Functions

* Suppose MITM attacker Mallory intercepts
Alice’s {M, T} transmission ...
— ...and wants to replace M with altered M*
— ... but secret key K

* We have secure integrity if MAC function
T = F(M, K) has two properties:
1. Mallory can’t compute T* = F(M*, K)
e Otherwise, could send Bob {M*, T*} and fool him

2. Mallory can’t find M** such that F(M**, K) =T
e Otherwise, could send Bob {M**, T} and fool him

* These need to hold even if Mallory can observe
many {M, T} pairs, including for M’s she chose

HMAC: Building a MAC
Out of a secure hash function

For a given secret key K & message M, let:

— H be a cryptographically strong hash function

— Pad,, Pad, = well-known strings

— K* = a lightly adjusted version of K (padded if K too short)

HMAC(M, K) = H[(K* @ Pad_) ||
H((K* @ Pad,) [M)]
Most widely used MAC on the Internet

Currently believed to be safe even if underlying hash
function is somewhat flawed (e.g., SHA-1)

— though of course not prudent to bet on that continuing ...

AES-EMAC: Building a MAC out of a secure block cipher

Considerations when using MACs

* Along with messages, can use for data at rest

— E.g. laptop left in hotel, providing you don’t store
the key on the laptop

— Can build an efficient data structure for this that
doesn’t require re-MAC’ing over entire disk image
when just a few files change

* MACs in general provide no promise not to leak
info about message
— Though the ones we’ve seen don’t
— Compute MAC on ciphertext if this matters

Considerations when using MACs, con’t

* |f also encrypting, do not use the same key to
encrypt and for the MAC

— some MACs can then leak info about crypto stages

* |f confidentiality doesn’t matter, fine to send
the computed MAC in the clear

Digital Signatures

The Problem with Digitized Signatures

Goal: demonstrate that author produced/endorsed
document

— —
|
o

“Alice agrees to pay MallorDy’I$

I -~
—— —/
[]
[] o_

—

Alicggrees to pay Mallory $10,000

Problem: attacker can copy
Alice’s sig from one doc to another

Digital Signatures

Solution: make signature depend on document

— —
]
o

"Bob agrees o pay Mallory1$

Signature S =

)

Secret known only to Alice

Given signature S and document, need to be able to confirm
that only Alice could have produced S using some verification
function V(S, Alice). Discard as forgery/corrupted if not.

Digital Signatures, con’t

 |dea: as with public-key encryption, leverage a
function that’s easy to compute but intractable
to invert ... unless one possesses some private
information

— But instead, do this for a function that’s hard to
compute without private info, but easy to invert

* One way to produce such a function: use the
inverse of a public-key encryption function

e For example, consider RSA ...

