
Integrity and Authentication

CS 161: Computer Security
Prof. Vern Paxson

TAs: Paul Bramsen, Apoorva Dornadula,

David Fifield, Mia Gil Epner, David Hahn, Warren He,
Grant Ho, Frank Li, Nathan Malkin, Mitar Milutinovic,

Rishabh Poddar, Rebecca Portnoff, Nate Wang

http://inst.eecs.berkeley.edu/~cs161/
February 28, 2017

Mi: ith message
of plaintext

Alice Bob

Eve

E(Mi,	KE)	
Ci: ith message
of ciphertext D(Ci,	KD)	

KE

Ci

Mi

Mi?

E(Mi, KE) and D(Ci, KD) are
inverses for particular KE and KD

“Public-key encryption”

KD KD? KE

RSA Public-Key Encryption
1.  Generate random primes p, q
2.  Compute n = p·q
3.  Compute φ(n) = (p-1)(q-1)

 Important: if Eve sees n, she can’t deduce φ(n)
 unless she can factor n into p and q

4.  Choose 2 < e < φ(n), where e and φ(n) are relatively prime
 Could be something simple like e=3, if rel. prime.

5.  Public key KE = { n, e }. Both are Well Known.
6.  Compute d = e-1 mod φ(n)

 d is multiplicative inverse of e, modulo φ(n)
 easy to find if you know φ(n)

7.  Private key KD = { d }
(believed) HARD to compute if you don’t know p, q

RSA Encryption/Decryption
•  Let M be a message interpreted as an unsigned

integer with M < n
 (We’ll deal with M ≥ n in a minute …)

•  E(M, KE) = E{n, e}(M) = Me mod n

•  D(C, KD) = D{d}(C) = Cd mod n
= (Me)d mod n
= Me·d mod n
= (Me·d-1)·M mod n
= …

Note: taking modular roots is
believed to be computationally
intractable: otherwise Eve would
just extract the eth root of the
ciphertext to recover M

RSA Encryption/Decryption, con’t
•  So we have: D(C, KD) = (Me·d-1)·M mod n
•  Now recall that d is the multiplicative inverse of e,

modulo φ(n), and thus:
 e·d = 1 mod φ(n) (by definition)
 e·d - 1 = k·φ(n) for some k

•  Therefore D(C, KD) = (Me·d-1)·M mod n
= (Mkφ(n))·M mod n
= [(Mφ(n))k]·M mod n
= (1k)·M mod n by Euler’s Theorem
= M mod n = M

(believed) Eve can recover M from C iff Eve can factor n=p·q

Some	Considera-ons	for	
Public-Key	Encryp-on	

•  Suppose	Eve	knows	message	is	one	of	“Buy!”	or	
“Sell”.		Problem?	
–  Eve	can	just	try	encrypGng	each	using	{n,	e}	to	see	which	
yields	the	observed	ciphertext	

•  C	=	(“Buy!”)e	mod	n?		C	=	(“Sell”)e	mod	n?	

–  SoluGon:	encrypt	Encode(M),	where	Encode	adds	a	
random	IV	(and	also	adjusts	M	for	some	corner-cases	that	
are	easy	to	invert)	

•  Encode	is	well-known,	easy	to	invert	

•  What	if	M	≥	n?	
– DecrypGon	D(C,	KD)	=	(Me·d-1)·M	mod	n	⟹	can’t	recover	M	

•  SoluGon:	use	Public-Key	encrypGon	to	encrypt	a	
random	AES	key	K*;	encrypt	M	using	AES(M,	K*)	
–  Indeed,	this	is	how	public-key	encrypGon	is	rouGnely	used	–	
because	public	key	operaGons	so	much	slower	than	block	cipher	
operaGons	

Some	Considera-ons	for	
Public-Key	Encryp-on,	con’t	

Integrity	&	Message	Authen-ca-on	

Integrity	and	Authen-ca-on	

•  Integrity:	Bob	can	confirm	that	what	he’s	received	is	exactly	
the	message	M	that	was	originally	sent	

•  AuthenGcaGon:	Bob	can	confirm	that	what	he’s	received	
was	indeed	generated	by	Alice	

•  Reminder:	for	either,	confidenGality	may-or-may-not	ma]er	
–  E.g.	conf.	not	needed	when	Mozilla	distributes	a	new	Firefox	binary	

•  Approach	using	symmetric-key	cryptography:	
–  Integrity	via	MACs	(which	use	a	shared	secret	key	K)	
–  Authen<ca<on	arises	due	to	confidence	that	only	Alice	&	Bob	have	K	

•  Approach	using	public-key	cryptography:	
–  “Digital	signatures”	provide	both	integrity	&	authen<ca<on	together	

•  Key	building	block:	cryptographically	strong	hash	funcGons	

Encryp-on	Does	Not	Provide	Integrity	

•  Simple	example:	Consider	a	stream	cipher	SCK	that	uses	
a	cryptographically	strong	sequence	of	pseudo-random	
bytes,	Ri.	
–  Split	message	M	into	plaintext	bytes	Pi.		Ci	=	Pi	⨁	Ri	

Mi

(Small) K, IV

PRNG	

Keystream Ri

⨁

Mi: ith message
of plaintext

(Small) K, IV

PRNG	

Keystream Ri

⨁
Ci

Alice Bob

Using a PRNG to Build a
Stream Cipher

Encryp-on	Does	Not	Provide	Integrity	

•  Simple	example:	Consider	a	stream	cipher	SCK	that	uses	
a	cryptographically	strong	sequence	of	pseudo-random	
bytes,	Ri.	
–  Split	message	M	into	plaintext	bytes	Pi.		Ci	=	Pi	⨁	Ri	

•  Suppose	Mallory	knows	that	Alice	sends	to	Bob	“Pay	
Mal	$100”.		Mallory	intercepts	corresponding	C,	IV	

Mallory	the	Manipulator	

•  Mallory	is	an	ac<ve	aEacker	
– Can	introduce	new	messages	(ciphertext)	
– Can	“replay”	previous	ciphertexts	
– Can	cause	messages	to	be	reordered	or	discarded	

•  A	“Man	in	the	Middle”	(MITM)	a]acker	
– Can	be	much	more	powerful	than	just	eavesdropping	

Encryp-on	Does	Not	Provide	Integrity	

•  Simple	example:	Consider	a	stream	cipher	SCK	that	uses	
a	cryptographically	strong	sequence	of	pseudo-random	
bytes,	Ri.	
–  Split	message	M	into	plaintext	bytes	Pi.		Ci	=	Pi	⨁	Ri	

•  Suppose	Mallory	knows	that	Alice	sends	to	Bob	“Pay	
Mal	$100”.		Mallory	intercepts	corresponding	C,	IV	
– M	=	“Pay	Mal	$100”.		C	=	“r4ZC#jj8qThM”	
– M10..12	=	“100”.		C10..12	=	“ThM”	
–  R10..12	=	?	

Encryp-on	Does	Not	Provide	Integrity	

•  R10..12	=	?	
•  Mallory	computes	

	𝛽	=	(“100”	⨁	“999”)	⨁	C10..12	
					=	(“100”	⨁	“999”)	⨁	“ThM”	
					=	(“100”	⨁	“999”)	⨁	(“100”	⨁	R10..12)	
					=	(“999”	⨁	R10..12)	⨁	(“100”	⨁	“100”)	
					=	“999”	⨁	R10..12	

•  Mallory	constructs	C'	=	“r4ZC#jj8q𝛽1𝛽2𝛽3”.		Sends	it	and	IV	to	Bob.	

•  Bob	decrypts.		SCK	with	IV	yields	same	Ri.	
M'	=	“Pay	Mal	$999”	…	even	though	Mallory	doesn’t	know	K	

•  More	general	a]ack:	Mallory	recovers	all	of	Ri	=	Ci	⨁	Mi	

–  Now	can	construct	valid	C'	for	any	desired	M'	via	C'i	=	Ri	⨁	M'i	

Integrity	and	Authen-ca-on	

•  Integrity:	Bob	can	confirm	that	what	he’s	received	is	exactly	
the	message	M	that	was	originally	sent	

•  AuthenGcaGon:	Bob	can	confirm	that	what	he’s	received	
was	indeed	generated	by	Alice	

•  Reminder:	for	either,	confidenGality	may-or-may-not	ma]er	
–  E.g.	conf.	not	needed	when	Mozilla	distributes	a	new	Firefox	binary	

•  Approach	using	symmetric-key	cryptography:	
–  Integrity	via	MACs	(which	use	a	shared	secret	key	K)	
–  Authen<ca<on	arises	due	to	confidence	that	only	Alice	&	Bob	have	K	

•  Approach	using	public-key	cryptography:	
–  “Digital	signatures”	provide	both	integrity	&	authen<ca<on	together	

•  Key	building	block:	cryptographically	strong	hash	func<ons	

Hash	Func-ons	

•  ProperGes	
– Variable	input	size	
– Fixed	output	size	(e.g.,	512	bits)	
– Efficient	to	compute	
– Pseudo-random	(mixes	up	input	extremely	well)	

•  Provides	a	“fingerprint”	of	a	document	
– E.g.	“shasum	-a	256	<exams/mt1-soluGons.pdf”	
prints	
0843b3802601c848f73ccb5013afa2d5c4d424a6ef
477890ebf8db9bc4f7d13d	

Cryptographically	Strong	Hash	FuncGons	

•  A	collision	occurs	if	x≠y	but	Hash(x)	=	Hash(y)	
– Since	input	size	>	output	size,	collisions	do	happen	

•  A	cryptographically	strong	Hash(x)	provides	
three	properGes:	
1. One-way:	h	=	Hash(x)	easy	to	compute,	but	not	to	
invert.		(Vivid	image:	Hash(cow)	=	hamburger	😏.)	
•  Intractable	to	find	any	x'	s.t.	Hash(x')	=	h,	for	a	given	h	
•  Also	termed	“preimage	resistant”	

Cryptographically	Strong	Hash	FuncGons	

•  The	other	two	properGes	of	a	cryptographically	
strong	Hash(x):	
–  Second	preimage	resistant:	given	x,	intractable	to	find	
x'	s.t.	Hash(x)	=	Hash(x')	

–  Collision	resistant:	intractable	to	find	any	x,	y	s.t.	
Hash(x)	=	Hash(y)	

•  Collision	resistant	⟹	Second	preimage	resistant	
– We	consider	them	separately	because	given	Hash	
might	differ	in	how	well	it	resists	each		

– Also,	the	Birthday	Paradox	means	that	for	n-bit	Hash,	
finding	x-y	pair	takes	only	≈	2n/2	pairs	

•  Vs.	potenGally	2n	tries	for	x':	Hash(x)	=	Hash(x')	for	given	x	

Cryptographically	Strong	Hash	FuncGons,	
con’t	

•  Some	contemporary	hash	funcGons	
– MD5:	128	bits			broken	–	lack	of	collision	resistance	
–  SHA-1:	160	bits			broken		(as	of	last	week!)	
–  SHA-256:	256	bits			at	least	not	currently	broken	

•  Provide	a	handy	way	to	unambiguously	refer	to	large	
documents	
–  If	hash	can	be	securely	communicated,	provides	integrity	

•  E.g.	Mozilla	securely	publishes	SHA-256(new	FF	binary)	
•  Anyone	who	fetches	binary	can	use	“cat	binary	|	shasum	-a	256”	
to	confirm	it’s	the	right	one,	untampered	

•  Not	enough	by	themselves	for	integrity,	since	funcGons	are	
completely	known	–	Mallory	can	just	compute	revised	hash	
value	to	go	with	altered	message	

Message	Authen-ca-on	Codes	(MACs)	

•  Symmetric-key	approach	for	integrity	
–  Uses	a	shared	(secret)	key	K		

•  Goal:	when	Bob	receives	a	message,	can	confidently	
determine	it	hasn’t	been	altered	
–  In	addiGon,	whomever	sent	it	must	have	possessed	K	

	(⇒	message	authenGcaGon)	

•  Conceptual	approach:	
–  Alice	sends	{M,	T}	to	Bob,	with	tag	T	=	F(K,	M)	

•  Note,	M	could	instead	be	C	=	EK'(M),	but	not	required	

– When	Bob	receives	{M',	T'},	Bob	checks	whether	T'	=	F(K,	M')	
•  If	so,	Bob	concludes	message	untampered,	came	from	Alice	
•  If	not,	Bob	discards	message	as	tampered/corrupted	

Requirements	for	Secure	MAC	Func-ons	
•  Suppose	MITM	a]acker	Mallory	intercepts	
Alice’s	{M,	T}	transmission	…	

–  …	and	wants	to	replace	M	with	altered	M*	
–  …	but	doesn’t	know	secret	key	K	

• We	have	secure	integrity	if	MAC	funcGon	
T	=	F(M,	K)	has	two	properGes:	
1. Mallory	can’t	compute	T*	=	F(M*,	K)	

•  Otherwise,	could	send	Bob	{M*,	T*}	and	fool	him	

2. Mallory	can’t	find	M**	such	that	F(M**,	K)	=	T	
•  Otherwise,	could	send	Bob	{M**,	T}	and	fool	him	

•  These	need	to	hold	even	if	Mallory	can	observe	
many	{Mi,	Ti}	pairs,	including	for	Mi’s	she	chose	

HMAC:	Building	a	MAC	
Out	of	a	secure	hash	func-on	

•  For	a	given	secret	key	K	&	message	M,	let:	
–  H	be	a	cryptographically	strong	hash	funcGon	
–  Padi,	Pado	=	well-known	strings	
–  K*	=	a	lightly	adjusted	version	of	K	(padded	if	K	too	short)	

•  HMAC(M,	K)	=	H[(K*	⨁	Pado)‖	
																																															H((K*	⨁	Padi)‖M)]		

•  Most	widely	used	MAC	on	the	Internet	
•  Currently	believed	to	be	safe	even	if	underlying	hash	
funcGon	is	somewhat	flawed	(e.g.,	SHA-1)	
–  though	of	course	not	prudent	to	bet	on	that	conGnuing	…	

AES-EMAC:	Building	a	MAC	out	of	a	secure	block	cipher	

Takes	256-bit	key	K,	
split	into	two	128-bit	AES	keys,	K1	and	K2	

Provably	secure	if	AES	is	secure	

Considera-ons	when	using	MACs	

•  Along	with	messages,	can	use	for	data	at	rest	
– E.g.	laptop	le�	in	hotel,	providing	you	don’t	store	
the	key	on	the	laptop	

– Can	build	an	efficient	data	structure	for	this	that	
doesn’t	require	re-MAC’ing	over	enGre	disk	image	
when	just	a	few	files	change	

• MACs	in	general	provide	no	promise	not	to	leak	
info	about	message	
– Though	the	ones	we’ve	seen	don’t	
– Compute	MAC	on	ciphertext	if	this	ma]ers	

Considera-ons	when	using	MACs,	con’t	

•  If	also	encrypGng,	do	not	use	the	same	key	to	
encrypt	and	for	the	MAC	
– some	MACs	can	then	leak	info	about	crypto	stages	

•  If	confidenGality	doesn’t	ma]er,	fine	to	send	
the	computed	MAC	in	the	clear	

Digital	Signatures	

The	Problem	with	Digi<zed	Signatures	

Goal:	demonstrate	that	author	produced/endorsed	
document	
	

	

	

	

	

	
Problem:	a]acker	can	copy	
Alice’s	sig	from	one	doc	to	another	

Alice agrees to pay Mallory1$

Alice agrees to pay Mallory $10,000

Digital	Signatures	
SoluGon:		make	signature	depend	on	document	

Bob agrees to pay Mallory1$
Signature	S	=			F(,)
Given	signature	S	and	document,	need	to	be	able	to	confirm	
that	only	Alice	could	have	produced	S	using	some	verificaGon	
funcGon	V(S,	Alice).		Discard	as	forgery/corrupted	if	not.		

Secret	known	only	to	Alice	

Digital	Signatures,	con’t	

•  Idea:	as	with	public-key	encrypGon,	leverage	a	
funcGon	that’s	easy	to	compute	but	intractable	
to	invert	…	unless	one	possesses	some	private	
informaGon	
– But	instead,	do	this	for	a	funcGon	that’s	hard	to	
compute	without	private	info,	but	easy	to	invert	

• One	way	to	produce	such	a	funcGon:	use	the	
inverse	of	a	public-key	encrypGon	funcGon	

•  For	example,	consider	RSA	...	

