
Malware: Worms and Botnets

CS 161: Computer Security
Prof. Vern Paxson

TAs: Paul Bramsen, Apoorva Dornadula,

David Fifield, Mia Gil Epner, David Hahn, Warren He,
Grant Ho, Frank Li, Nathan Malkin, Mitar Milutinovic,

Rishabh Poddar, Rebecca Portnoff, Nate Wang

https://inst.eecs.berkeley.edu/~cs161/
April 25, 2017

CS 161 End Game
•  Thursday’s lecture (EECS faculty retreat):

–  Side channels, Bitcoin blockchain, user authentication,
trusted hardware

•  Plus some associated research activities (not in scope)

–  Presented by Frank/Rebecca/Grant/Rishabh:

•  RRR:
–  no section, see Piazza for office hours
–  Final review: regular class slots Tu/Th (+ webcast),

conducted by TAs

Worms
•  Worm = code that self-propagates/replicates

across systems by arranging to have itself
immediately executed
–  Generally infects by altering running code
–  No user intervention required

Worms can potentially
spread quickly because
they parallelize the
process of propagating/
replicating.

Same holds for viruses,
but they often spread
more slowly since
require some sort of
user action to trigger
each propagation.

Rapid Propagation

Worms
•  Worm = code that self-propagates/replicates across

systems by arranging to have itself immediately
executed
–  Generally infects by altering running code
–  No user intervention required

•  Propagation includes notions of targeting & exploit
–  How does the worm find new prospective victims?

•  One common approach: random scanning of 32-bit IP address
space

–  Generate pseudo-random 32-bit number; try connecting to it; if successful, try
infecting it; repeat

•  But for example “search worms” use Google results to find victims
–  How does worm get code to automatically run?

•  One common approach: buffer overflow ⇒ code injection
•  But for example a web worm might propagate using XSS

Surely is not

vulnerable to XSS worms, right?

<div id="infection">
<marquee style="font-size: 200%; color: red; text-shadow:
 gold 0 0 10px;">
Dilbert is my hero.
</marquee>
<script>
// Copy the infection text out of the DOM.
var squig =
 document.getElementById("infection").outerHTML;
// Create and send a do_squig request.
var req = new XMLHttpRequest();
req.open("GET", "/do_squig?squig=" +
 encodeURIComponent(squig));
req.send();
</script>
</div>

Squig that self-propagates upon viewing

(not	quite	a	true	worm	as	it	requires	a	user	to	view	it)	

Modeling Worm Spread
•  Worm-spread often well described as infectious epidemic

–  Classic SI model: homogeneous random contacts
•  SI = Susceptible-Infectible

•  Model parameters:
–  N: population size
–  S(t): susceptible hosts at time t.
–  I(t): infected hosts at time t.
–  β: contact rate

•  How many population members each infected host communicates with
per unit time

•  E.g., if each infected host scans 250 Internet addresses per unit time, and 2% of
Internet addresses run a vulnerable (maybe already infected) server ⇒ β = 5

•  For scanning worms, larger (= denser) vulnerable pop. ⇒ higher β ⇒ faster worm!

•  Normalized versions reflecting relative proportion of infected/
susceptible hosts
–  s(t) = S(t)/N i(t) = I(t)/N s(t) + i(t) = 1

N = S(t) + I(t)
S(0) = I(0) = N/2

Computing How An Epidemic Progresses

•  In continuous time:

€

dI
dt

= β⋅ I ⋅ S
N

Increase in
infectibles
per unit time

Total attempted
contacts per
unit time

Proportion of
contacts expected
to succeed

•  Rewriting by using i(t) = I(t)/N, S = N - I:

€

di
dt

= βi(1− i) ⇒

€

i(t) =
eβt

1+ eβt
Fraction
infected grows
as a logistic

Fitting the Model to “Code Red”

Exponential
initial growth

Growth slows as
it becomes harder
to find new victims!

Code	Red	=	first	worm	of	
the	“Modern	Worm	Era”,	
circa	2001.	

Life Just Before Slammer

Life 10 Minutes After Slammer

Going Fast: Slammer
•  Slammer exploited connectionless UDP

service, rather than connection-oriented TCP
•  Entire worm fit in a single packet!
⇒ When scanning, worm could “fire and forget”

 Stateless!

•  Worm infected 75,000+ hosts in << 10 minutes
•  At its peak, doubled every 8.5 seconds

The Usual Logistic Growth

Slammer’s Growth
What could have
caused growth to
deviate from the
model?

Hint: at this point the
worm is generating
55,000,000 scans/sec

Answer: the Internet ran
out of carrying capacity!
(Thus, β decreased.)
Access links used by
worm completely clogged.
Caused major collateral
damage.

Stuxnet

•  Discovered July 2010. (Released: Mar 2010?)
•  Multi-mode spreading:

–  Initially spreads via USB (virus-like)
–  Once inside a network, quickly spreads internally

using Windows RPC scanning
•  Kill switch: programmed to die June 24, 2012
•  Targeted SCADA systems

–  Used for industrial control systems, like
manufacturing, power plants

•  Symantec: infections geographically clustered
–  Iran: 59%; Indonesia: 18%; India: 8%

Stuxnet, con’t

•  Used four Zero Days
–  Unprecedented expense on the part of the author

•  “Rootkit” for hiding infection based on installing
Windows drivers with valid digital signatures
–  Attacker stole private keys for certificates from two

companies in Taiwan
•  Payload: do nothing …

– … unless attached to particular models of frequency
converter drives operating at 807-1210Hz

– … like those made in Iran (and Finland) …
– … and used to operate centrifuges for producing

enriched uranium for nuclear weapons

Stuxnet, con’t

•  Payload: do nothing …
– … unless attached to particular models of frequency

converter drives operating at 807-1210Hz
– … like those made in Iran (and Finland) …
– … and used to operate centrifuges for producing

enriched uranium for nuclear weapons
•  For these, worm would slowly increase drive

frequency to 1410Hz …
– … enough to cause centrifuge to fly apart …
– … while sending out fake readings from control

system indicating everything was okay …
•  … and then drop it back to normal range

5 Minute Break

Questions Before We Proceed?

Botnets
•  Collection of compromised machines (bots) under

(unified) control of an attacker (botmaster)
•  Method of compromise decoupled from method of

control
–  Launch a worm / virus / drive-by infection / etc.
–  (Or just buy the access – discussed later)

•  Upon infection, new bot “phones home” to
rendezvous w/ botnet command-and-control (C&C)

•  Botmaster uses C&C to push out commands and
updates

•  Lots of ways to architect C&C:
–  Star topology; hierarchical; peer-to-peer
–  Encrypted/stealthy communication

Centralized	Botnet	
Command-and-Control	
(C&C)	 /	Botmaster	

Example of C&C Messages

1.  Activation (report from bot to botmaster)
2.  Email address harvests
3.  Spamming instructions
4.  Delivery reports
5.  DDoS instructions
6.  FastFlux instructions (rapidly changing DNS)
7.  HTTP proxy instructions
8.  Sniffed passwords report
9.  IFRAME injection/report From the “Storm”

botnet circa 2008

Fighting Bots / Botnets
•  How can we defend against bots / botnets?

•  Approach #1: prevent the initial bot infection
–  Equivalent to preventing malware infections in general ….

HARD
•  Approach #2: Take down the C&C master server

–  Find its IP address, get associated ISP to pull plug

Fighting Bots / Botnets
•  How can we defend against bots / botnets?

•  Approach #1: prevent the initial bot infection
–  Equivalent to preventing malware infections in general ….

HARD
•  Approach #2: Take down the C&C master server

–  Find its IP address, get associated ISP to pull plug
•  Botmaster countermeasures?

–  Counter #1: keep moving around the master server
•  Bots resolve a domain name to find it (e.g. c-and-c.evil.com)
•  Rapidly alter address associated w/ name (“fast flux”)

–  Counter #2: buy off the ISP … (“bullet-proof hosting”)

Fighting Bots / Botnets, con’t
•  Approach #3: seize the domain name used for C&C
•  … Botmaster counter-measure?
•  Business counter-measure: bullet-proof domains

Fighting Bots / Botnets, con’t
•  Approach #3: seize the domain name used for C&C
•  … Botmaster counter-measure?
•  Business counter-measure: bullet-proof domains
•  Technical counter-measure: DGAs

–  Each day (say), bots generate large list of possible
domain names using a Domain Generation Algorithm

•  Large = 50K, in some cases
•  E.g.: eqxowsn.info,	ggegtugh.info,	hquterpacw.net,	
oumaac.com,	qfiadxb.net,	rwyoehbkhdhb.info,	
rzziyf.info,	vmlbhdvtjrn.org,	yeiesmomgeso.org,	
yeuqik.com,	yfewtvnpdk.info,	zffezlkgfnox.net	

–  Bots then try a random subset looking for a C&C server
•  Server signs its replies, so bot can’t be duped
•  Attacker just needs to register & hang onto a small portion of

names to retain control over botnet

Fighting Bots / Botnets, con’t
•  Approach #4: rally the community to sever bullet-

proof hosting service’s connectivity

Fighting Bots / Botnets, con’t
•  Approach #4: rally the community to sever bullet-

proof hosting service’s connectivity
•  Botmaster countermeasure?
•  Who needs to run a bot when you can buy

just-in-time bots … !

The Malware
“Pay Per Install” (PPI)

Ecosystem

41

Th
e	
P
P
I	E

co
-s
ys

te
m
		

Th
e	
P
P
I	E

co
-s
ys

te
m
		

Th
e	
P
P
I	E

co
-s
ys

te
m
		

Th
e	
P
P
I	E

co
-s
ys

te
m
		

Th
e	
P
P
I	E

co
-s
ys

te
m
		

Th
e	
P
P
I	E

co
-s
ys

te
m
		

49

Prices	are	per	thousand	installs	

