Network Attacks, Con’t

CS 161: Computer Security

Prof. Vern Paxson

TAs: Paul Bramsen, Apoorva Dornadula,
David Fifield, Mia Gil Epner, David Hahn, Warren He,
Grant Ho, Frank Li, Nathan Malkin, Mitar Milutinovic,

Rishabh Poddar, Rebecca Portnoff, Nate Wang

http://inst.eecs.berkeley.edu/~cs161/

The Transport Layer: TCP

“Best Effort” is Lame! What to do?

* It's the job of our Transport (layer 4) protocols to
build data delivery services that our apps need out
of IP’s modest layer-3 service

-

Layer 4: Transport Layer

Application

(Inter)Network

1 -

-
4 Transport
3
2

(Datagram = single packet message)

“Best Effort” is Lame! What to do?

* |It's the job of our Transport (layer 4) protocols to
build data delivery services that our apps need out
of IP’'s modest layer-3 service

* #1 workhorse: TCP (Transmission Control Protocol)

« Service provided by TCP:

— Connection oriented (explicit set-up / tear-down)

o End hosts (processes) can have multiple concurrent long-lived
communication

—Reliable, in-order, byte-stream delivery
o Robust detection & retransmission of lost data

p
TCP “Bytestream” Service

Process A on host H1

|
S
o (o
O

7 Rg
¢ kg

08 21Ad

Process B
on host H2

0949
[99
7 9Ag
€ 9Ad

08 IAg

p
Bidirectional communication:

Process B on host H2

|
S
o (o
O

oy

=<
[l
(¢
(8]

7 Rg

€L AAg

Process A
on host H1

0 9kg
1 9Ag
kg
€ 9Ad

€L AAg

TCP Header

(Link Layer Header)

(IP Header)

Source port Destination port

Sequence number

Acknowledgment

HdrLen

0

Flags | Advertised window

Checksum Urgent pointer

Options (variable)

TCP Header

(Link Layer Header)

Ports are
associated
with OS
processes

(IP Header)

Source port Destination port

Sequence number

Acknowledgment
HdrLen| o | Flags | Advertised window
Checksum Urgent pointer

Options (variable)

-

(Link Layer Header)
TCP Header
(IP Header)
Ports are
associated /.<i§ource port Destination port
with OS —
processes Sequence number
Acknowledgment
IP source & destination - -
addresses plus TCP HdrLen| 9 | Flags | Advertised window
source and destination _
ports uniquely identifies Checksum Urgent pointer

a (bidirectional) TCP

connection

Options (variable)

4. Connect to google.com server

N\ 216.97.19.132

o X3 the 17
\ e \ @

resolver
) ’ .>

172.217.6.78

-

TCP Header

apgisc;rteed /</§ource port Destination port
with OS — —
processes Sequence number
Acknowledgment
;ngeusrggs&pfuis;iga;ion HdrLen| 0 | Flags | Advertised window
Z‘S‘r’tfﬁrﬁgﬂe?ﬁ?é'gﬁfi'ﬁgs Checksum Urgent pointer

a (bidirectional) TCP

connection

Some port numbers are
“well known”
e.g. port 443 = HTTPS

Options (variable)

-

TCP Header

Starting

sequence
number (byte /<

Source port Destination port
L Sequence number R

offset) of data

e —

————

Acknowledgment

carried in this
“segment’

HdrLen| 0 | Flags

Advertised window

Checksum

Urgent pointer

Options (variable)

p
TCP Header

Starting Source port Destination port
sequence — —
number (byte /<\ Sequence number />
offset) of data Acknowledgment
carried in this
“segment” HdrLen| o | Flags | Advertised window
Checksum Urgent pointer
Byte streams
numbered Options (variable)

independently in
each direction

p
TCP Header

Starting Source port Destination port
sequence — —
number (byte /<\ Sequence number />
offset) of data Acknowledgment
carried in this
“segment” HdrLen| o | Flags | Advertised window
Checksum Urgent pointer
Byte streams
numbered Options (variable)

independently in
each direction

-

TCP Header

Acknowledgment
gives seq # just
beyond highest seq.
received in order.

If sender successfully
sends N bytestream
bytes starting at seq
S then “ack” for that
will be S+N.

Source port

Destination port

Sequence number

———

—

—]

I Acknowledgment R

HdrLen| o | Flags | Advertised window
Checksum Urgent pointer

Options (variable)

Sequence Numbers

Host A

ISN (initial sequence number)

_——

A

VVY \ 4

Host B

Sequence 12 | TCP Data
number from A
= 1s* byte of
data
TCP
HDR

TCP Data

ACK sequence
number from B
= next
expected byte

-

TCP Header

Uses include:

acknowledging
data (“ACK”)

setting up (“SYN”)
and closing
connections
(“FIN” and “RST")

Source port Destination port

Sequence number

Acknowledgment

HdrLe —a—'< Flags >Advertised window

Checksum Urgent pointer

Options (variable)

Establishing a TCP Connection

A B

» Three-way handshake to establish connection

Establishing a TCP Connection

A B

Each host tells its Initial
Sequence Number

(ISN) to the other host.

(Spec says to pick based
on a clock)

» Three-way handshake to establish connection

Establishing a TCP Connection

A B
SYN Each host tells its Initial

T Sequence Number

(ISN) to the other host.

(Spec says to pick based
on a clock)

» Three-way handshake to establish connection

—Host A sends a SYN (open; “synchronize sequence
numbers”) to host B

Establishing a TCP Connection

A B
SYN Each host tells its Initial
m Sequence Number
S (ISN) to the other host.
(Spec says to pick based
on a clock)

» Three-way handshake to establish connection

—Host A sends a SYN (open; “synchronize sequence
numbers”) to host B

—Host B returns a SYN acknowledgment (SYN+ACK)

Establishing a TCP Connection

A B
SYN Each host tells its Initial
m Sequence Number
S (ISN) to the other host.
dck (Spec says to pick based

on a clock)

» Three-way handshake to establish connection

—Host A sends a SYN (open; “synchronize sequence
numbers”) to host B
—Host B returns a SYN acknowledgment (SYN+ACK)

—Host A sends an ACK to acknowledge the SYN+ACK

Establishing a TCP Connection

A B
SYN Each host tells its Initial
m Sequence Number
S (ISN) to the other host.
4ck (Spec says to pick based
Day, on a clock)
Dax

» Three-way handshake to establish connection

—Host A sends a SYN (open; “synchronize sequence
numbers”) to host B
—Host B returns a SYN acknowledgment (SYN+ACK)

—Host A sends an ACK to acknowledge the SYN+ACK

Timing Diagram: 3-Way Handshaking

: : Passive
Different starting Open
Active initial sequence
Open numbers (ISNs) in Server
each direction
Client (initiator) listen()
connect ()
SYN’ SeqNUm 5 x
‘\\
Ack=x+1
SYN + ACK, SeqNum =Y,
ACK, se
 2€qNum = ,
accept ()

TCP Conn. Setup & Data Exchange

Client (initiator)
IP address 1.2.1.2, port 3344

Server
IP address 9.8.7.6, port 80

SI'CA=1_
StA=9.8.7 6, %;i,za’_gch =3344,
’ SYN! Seq =x
— 6, SrcP=80, I
D ?;igggf';mmCK, Seq=y, ACKZX
DstA=1 -2-1 .2, S - 4
SI'CA=1_2 1.2
DStA=9.8.7.6, Dstpegy <3344,
3 _80, ACK, Ack = y+1
SrcA=1 2.1.2
e i, STCP=3
ACK - 344, DstA=
3 Seq—x+1, ACk = y+1 DsattA-ga.76, DStP=80
_ DstP=3344, ”
= DstA—1.2.1.2,
SrcA=9.8.76, S/¢7 82’6 Data="200 OK ... <html>
ACK, Seq = y+1, Ack = x+16,

—

TCP Threat: Disruption

« Normally, TCP finishes (“closes™) a connection
by each side sending a FIN control message
— Reliably delivered, since other side must ack

« But: if a TCP endpoint finds unable to continue
(process dies; info from other “peer” is
inconsistent), it abruptly terminates by sending a
RST control message

— Unilateral
— Takes effect immediately (no ack needed)

— Only accepted by peer if has correct* sequence
number

27

Source port

Destination port

Sequence number

Acknowledgment
HdrLen| o | Flags | Advertised window
Checksum Urgent pointer

Options (variable)

Source port Destination port

Sequence number

Acknowledgment
HdrLen| 0 ‘Z’ Advertised window
Checksum Urgent pointer

Options (variable)

Abrupt Termination

X

B
w2
égﬁ? P ~
5 2748 \2 £
‘ﬁ o 0o O
A N

time

« A sends a TCP packet with RESET (RST) flag to B
— E.g., because app. process on A crashed

— (Could instead be that B sends a RST to A)

* Assuming that the sequence numbers in the RST fit with what B
expects, That's It:

— B’s user-level process receives: ECONNRESET
— No further communication on connection is possible

TCP Threat: Disruption

« Normally, TCP finishes (“closes”) a connection
by each side sending a FIN control message
— Reliably delivered, since other side must ack

« But: if a TCP endpoint finds unable to continue
(process dies; info from other “peer” is
inconsistent), it abruptly terminates by sending a
RST control message

— Unilateral
— Takes effect immediately (no ack needed)

— Only accepted by peer if has correct* sequence
number

« So: if attacker knows ports & sequence numbers,
can disrupt any TCP connection

-

TCP RST Injection

Client (initiator)
IP address 1.2.1.2, port 3344

Server
IP address 9.8.7.6, port 80

IP address 6.6.6.6, port N/A

Client
dutifully
removes
connection

.
.
.
.
.
.
.
.
......
oooooo

H
t) q J y J /

-

TCP RST Injection

Client (initiator)
IP address 1.2.1.2, port 3344

Server
IP address 9.8.7.6, port 80

IP address 6.6.6.6, port N/A

Client | .7
. @ oo’
rejects _1.2.1.2,DstP=3344,
: _ srcP=80, DstA=1:2 "0 = <html> ...
SInCte. no CKS'-S(;Q_-Q_.S;71-6;\CK = x+16, Data= 200 OK
active ACK, =y
connection

J

TCP Threat: Data Injection

N&Sly D&ta

RA7AY

time /

« What about inserting data rather than disrupting a connection?
— Again, all that’s required is attacker knows correct ports, seq. numbers
— Receiver B is none the wiser!

« Termed TCP connection hijacking (or “session hijacking”)
— A general means to take over an already-established connection!

« We are toast if an attacker can see our TCP traffic!
— Because then they immediately know the &

-

TCP Data Injection

Client (initiator)
IP address 1.2.1.2, port 3344

Server
IP address 9.8.7.6, port 80

IP address 6.6.6.6, port N/A

Client
dutifully
processes
as server’s
response

.
.
.
.
.
.
.
.
cccccc
oooooo

H
t) q J y J /

Spoofed

-

TCP Data Injection

Client (initiator)
IP address 1.2.1.2, port 3344

Server
IP address 9.8.7.6, port 80

IP address 6.6.6.6, port N/A

Client
ignores
since
already

.............. P=80, DStA=1"‘2-8
processed

=9.8.7.6, Src 1
ACKS':Q =y+1, Ack = x+1 6, Data

SrcA=1 2.1.2
-2, SrcpP=
Ack o 12 344, DstA=9 g
q=x+1, Ack = y+1, Data=“G1.571.'6;’!ol?qsilt::’l:t8 O,
-htm|
Attacker i

2, DstP=3344,

Spoofed

 <ntmb> ..

that part of
bytestream

TCP Threat: Blind Spoofing

* |s it possible for an attacker to inject into a TCP
connection even if they can’t see our traffic?

* YES: if somehow they can or the port
and sequence numbers

* Let's look at a simpler related attack where the
goal of the attacker is to create a fake connection,
rather than inject into a real one
— Why?

— Perhaps to leverage a server’s trust of a given client as
identified by its IP address

— Perhaps to frame a given client so the attacker’s
actions during the connections can’t be traced back to
the attacker

4 p
Spoofing an Entire TCP Connection

Alleged Client (not actual) Server
IP address 1.2.1.2, port N/A IP address 9.8.7.6, port 80
Blind

Attacker

P=80,
A=9.8.7.6, Src I
1.24.2 Dsstlr’(:'-5566, SYN+ACK, Seq=Y,

DstA=

<
"

Attacker’s goal:

4 R
Spoofing an Entire TCP Connection

Alleged Client (not actual) Server
IP address 1.2.1.2, port NA IP address 9.8.7.6, port 80
Blind

Attacker

P=80,
A=9.8.7.6, Src o Aok = x+1
1.21.2 05?525566, SYN+ACK, Seq=Y,

DstA=

<
e m

4)
Spoofing an Entire TCP Connection
Alleged Client (not actual) Server
IP address 1.2.1.2, port NA IP address 9.8.7.6, port 80
Blind

Attacker

.
®e
®e
®e
®e
®e
LY
LY
.....
ceq
cee
......................

?
S Ol =¥y
t‘!\ 12 2 L]] q y,

4)
Spoofing an Entire TCP Connection
Alleged Client (not actual) Server
IP address 1.2.1.2, port N/A IP address 9.8.7.6, port 80
Blind

Attacker

9.8.7.6, srcP=80,

prifs SYN+ACK, Seq

1.21.2, DstP=5566,

DstA=

-

Reminder: Establishing a TCP Connection

~

A
SYN

ACK
Da tg

Da t&

/

By

B

=
e

Each host tells its Initial
Sequence Number
(ISN) to the other host.

(Spec says to pick based

“on a clock)

mem
=mEm

Summary of TCP Security Issues

« An attacker who can observe your TCP connection can

manipulate it:

— Forcefully terminate by forging a RST packet

— Inject (spoof) data into either direction by forging data packets

— Works because they can include in their spoofed traffic the
correct sequence numbers (both directions) and TCP ports

— Remains a major threat today

-

Summary of TCP Security Issues

An attacker who can observe your TCP connection can
manipulate it:

— Forcefully terminate by forging a RST packet

— Inject (spoof) data into either direction by forging data packets

— Works because they can include in their spoofed traffic the
correct sequence numbers (both directions) and TCP ports

— Remains a major threat today

An attacker who can predict the ISN chosen by a server
can “blind spoof” a connection to the server

— Makes it appear that host ABC has connected, and has sent data
of the attacker’s choosing, when in fact it hasn'’t

— Undermines any security based on trusting ABC’s IP address
— Allows attacker to “frame” ABC or otherwise avoid detection
— Fixed (mostly) today by choosing random ISNs

5 Minute Break

Questions Before We Proceed?

DNS: Operation & Threats

Host Names vs. IP addresses

* Host names
—Examples: www.cnn.com and bbc.co.uk
—Mnemonic name appreciated by humans
—Variable length, full alphabet of characters
—Provide little (if any) information about location

 |P addresses
—Examples: 64.236.16.20 and 212.58.224.131
—Numerical address appreciated by routers
—Fixed length, binary number
—Hierarchical, related to host location

Mapping Names to Addresses
* Domain Name System (DNS)

— Hierarchical name space divided into sub-trees

(“zones’)
o E.g..edu, .berkeley.edu, .eecs.berkeley.edu

— Zones distributed over collection of DNS name servers

* Hierarchy of DNS servers
— Root (hardwired into other servers)

— Top-level domain (TLD) servers
o E.g..com, .org, .net, .uk, .biz

— “Authoritative” DNS servers (e.g. for facebook.com)

* End systems configured with I[P address of a
to contact for their lookups

DNS Lookups via a Resolver

Host at xyz .poly.edu
wants IP address for
gala.cs.umass.edu

local DNS server

()

128.238.1.68

Caching heavily
used to minimize

VL

il

root DNS server (°.")

TLD DNS server

8

lookups @

requesting host

xyz.poly.edu

o

/7 (" .edu’)

authoritative DNS server
(‘umass.edu’,
‘cs.umass.edu’)
dns.cs.umass.edu

@ gaia.cs.umass.edu

DNS Threats

* DNS: path-critical for just about everything we do
—Maps hosthames < |P addresses

—Design only scales if we can minimize lookup traffic
o #1 way to do so: caching

o #2 way to do so: return not only answers to queries, but additional
info that will likely be needed shortly

* What if attacker eavesdrops on our DNS queries?
— Simple to then redirect us w/ spoofed misinformation

» Consider attackers who can’t eavesdrop - but still
aim to manipulate us via how the protocol functions

* Directly interacting w/ DNS: dig program on Unix
— Allows querying of DNS system
—Dumps each field in DNS responses

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a

;; global options: +cmd
;; Got answer:
;; —>>HEADER<<- opcode: QUERY,

;; QUESTION SECTION:
;eecs.mit.edu.

; ; ANSWER SECTION:
eecs.mit.edu. 21600

; ; AUTHORITY SECTION:

mit.edu. 11088
mit.edu. 11088
mit.edu. 11088

;; ADDITIONAL SECTION:

STRAWB.mit.edu. 126738
BITSY.mit.edu. 166408
W20NS.mit.edu. 126738

status:

IN

IN

IN
IN
IN

IN
IN
IN

NOERROR,
;; flags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL:

NS
NS
NS

i

Use Unix “dig” utility to look up IP address
(“A”) for hostname eecs.mit.edu via DNS

id: 19901

18.62.1.6

BITSY.mit.edu.
W20NS.mit.edu.
STRAWB.mit.edu.

18.71.0.151
18.72.0.3
18.70.0.160

3

dig eecs.mit.edu A

;. <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
:; global options: +cmd
;; Got answer:

;; —>>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901

;; QUESTION SECTION:
;eecs.mit.edu. IN

?/»

; ; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

This is dig identifying its version and

; ; AUTHORITY SECTION: > | :
the query it is attempting to look up

mit.edu. 11088
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:

STRAWB.mit.edu. 126738 1IN A 18.71.0.151
BITSY.mit.edu. 166408 1IN A 18.72.0.3
W20NS.mit.edu. 126738 1IN A 18.70.0.160

flags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL:

3

dig eecs.mit.edu A

.
4

o o
r 7

14

: <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
; global options: +cmd
 Got answer:

->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901

flags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL:

QUESTION SECTION:

;eecs.mit.edu. IN A

e o
r 7

ANSWER SECTION:

eecs.mit.edu. 21600 IN A 18.62.1.6

o o
r 7

Status values returned from the

AUTHORITY SECTION: . .
11088 remote name server queried by dig

mit.edu. .
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

o o
r 7

ADDITIONAL SECTION:

STRAWB.mit.edu. 126738 1IN A 18.71.0.151
BITSY.mit.edu. 166408 1IN A 18.72.0.3
W20NS.mit.edu. 126738 1IN A 18.70.0.160

c}

=

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a

;; global options: +cmd
;; Got answer:

;; —>>HEADER<<- opcode: QUERY, status:
;; flags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL:

;; QUESTION SECTION:
;eecs.mit.edu. IN

;» ANSWER SECTION:

NOERROR,

A

id: 19901

Including a 16-bit transaction identifier that

eecs.mit.edu. 2160 enables the DNS client (dig, in this case) to
match up the reply with its original request

; ; AUTHORITY SECTION:

mit.edu. 11088 IN
mit.edu. 11088 IN
mit.edu. 11088 IN

;; ADDITIONAL SECTION:

STRAWB.mit.edu. 126738 1IN
BITSY.mit.edu. 166408 1IN
W20NS.mit.edu. 126738 1IN

NS
NS
NS

i

BITSY.mit.edu.
W20NS.mit.edu.
STRAWB.mit.edu.

18.71.0.151
18.72.0.3
18.70.0.160

3

dig eecs.mit.edu A

; 5 <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a

;; global options: +cmd

;; Got answer:

->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901

flags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL:

;- QUESTION SECTION:
reecs.mit.edu. IN A

; ; ANSWER SECTION:
eecs.mit.edu. 21¢00 IN A 18.62.1.6

; ; AUTHORITY SECTION:

mit.edu. 1108K TN NS RITSY.mit.edu.
mit.edu. The name server echoes back the)NS.mit.edu.
mit.edu. question that it is answering as the first RAWB.mit.edu.

part of its reply
; ; ADDITIONAL SECTION:

STRAWB.mit.edu. 126738 1IN A 18.71.0.151
BITSY.mit.edu. 166408 1IN A 18.72.0.3
W20NS.mit.edu. 126738 1IN A 18.70.0.160

dig eecs.mit.edu A

; ;5 <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd

;; Got answer:

;; —>>HEADER<<- opcode
;; flags: gr rd ra; QU

;; QUESTION SECTION:
;eecs.mit.edu.

., ANSWER SECTION:

eecs.mit.edu.

; ; AUTHORITY SECTION:

mit.edu. 11088 IN NS
mit.edu. 11088 IN NS
mit.edu. 11088 IN NS

;; ADDITIONAL SECTION:

STRAWB.mit.edu. 126738 1IN A
BITSY.mit.edu. 166408 1IN A
W20NS.mit.edu. 126738 1IN A

18.62.1.6

BITSY.mit.edu.
W20NS.mit.edu.
STRAWB.mit.edu.

18.71.0.151
18.72.0.3
18.70.0.160

