
Security Potpourri!

CS 161: Computer Security

Guest Lecturers: Frank Li, Rebecca Portnoff,
Grant Ho, Rishabh Poddar

Instructor: Prof. Vern Paxson

TAs: Paul Bramsen, Apoorva Dornadula, David Fifield, Mia Gil Epner,
David Hahn, Warren He, Grant Ho, Frank Li, Nathan Malkin, Mitar

Milutinovic, Rishabh Poddar, Rebecca Portnoff, Nate Wang

http://inst.eecs.berkeley.edu/~cs161/

April 27, 2017

Side Channel Attacks

Side Channels

● Security systems are implemented in software or
hardware on physical devices, which interact with their
environment.

● Sometimes, attackers can monitor or affect these physical
interactions, leaking useful “side channel” information.

● Side channel attacks use this information.

Note: Hard to identify due to abstractions.

Attacking Password Checker

/* Tenex (old OS) system call to check if submitted password is correct. */

bool CheckPassword(char* submitted_password, char* user){
char* real_password = GetUserPassword(user);
for (int i = 0; submitted_password[i] && real_password[i]; ++i) {

if (submitted_password[i] != real_password[i])
return False;

}
/* Ensures both strings are same len. */
return submitted_password[i] == real_password[i];

}

Attacking Password Checker

/* Tenex (old OS) system call to check if submitted password is correct. */

bool CheckPassword(char* submitted_password, char* user){
char* real_password = GetUserPassword(user);
for (int i = 0; submitted_password[i] && real_password[i]; ++i) {

if (submitted_password[i] != real_password[i])
return False;

}
/* Ensures both strings are same len. */
return submitted_password[i] == real_password[i];

}

Attacking Password Checker

/* Tenex (old OS) system call to check if submitted password is correct. */

bool CheckPassword(char* submitted_password, char* user){
char* real_password = GetUserPassword(user);
for (int i = 0; submitted_password[i] && real_password[i]; ++i) {

if (submitted_password[i] != real_password[i])
return False;

}
/* Ensures both strings are same len. */
return submitted_password[i] == real_password[i];

}

Attacking Password Checker

/* Tenex (old OS) system call to check if submitted password is correct. */

bool CheckPassword(char* submitted_password, char* user){
char* real_password = GetUserPassword(user);
for (int i = 0; submitted_password[i] && real_password[i]; ++i) {

if (submitted_password[i] != real_password[i])
return False;

}
/* Ensures both strings are same len. */
return submitted_password[i] == real_password[i];

}

Say passwords are only alphanumeric.
To brute force a 10-character
password, requires guessing:

6210 = 8.39*1017 possible passwords.

Better “Side Channel” Attack

Leverage memory layout of the submitted password, by
spreading it out across multiple pages.

W i l d g u e s s

Page out (or unmap) this page
If password doesn’t start with ‘W’, CheckPassword returns
immediately (loop exits after 1 iteration).

If password DOES start with ‘W’, CheckPassword looks for
second character of submitted password, and page faults!

Better “Side Channel” Attack
Page faults are slow, timing side channel! (Seg faults also visible)

Real password: cs161rocks
 a a a a a a a a a a
 b a a a a a a a a a
 c a a a a a a a a a

 c a a a a a a a a a
…...

 c s a a a a a a a a

No Page Fault

No Page Fault

Page
Fault

No Page Fault

Page
FaultNeed ≤ 62 * 10 guesses

Potential Fixes?

Fix 1: Always check entire password.

- Might still leak password length based on how long the
check takes!

Fix 2: Assume a max length for password. Always loop that
many times, even if password is shorter.

- Constant time algorithm: Eliminates timing side channel,
but now caps password length and has worse
performance.

RSA decryption: M = Cd mod N
Common algorithm for exponentiation is “square and multiply”.

def exponentiate(base C, exponent d):
V = 1
For each bit b in d (most to least significant):

V = V^2 mod N
If b==1: V = V*C mod N

return V

Ex: d=1010 in binary = 10 in decimal.
 Old V = 1

Power Analysis on RSA

RSA decryption: M = Cd mod N
Common algorithm for exponentiation is “square and multiply”.

def exponentiate(base C, exponent d):
V = 1
For each bit b in d (most to least significant):

V = V^2 mod N
If b==1: V = V*C mod N

return V

Ex: d=1010 in binary = 10 in decimal.
 Old V = 1, New V = 12 * C = C (bit is 1)

Power Analysis on RSA

RSA decryption: M = Cd mod N
Common algorithm for exponentiation is “square and multiply”.

def exponentiate(base C, exponent d):
V = 1
For each bit b in d (most to least significant):

V = V^2 mod N
If b==1: V = V*C mod N

return V

Ex: d=1010 in binary = 10 in decimal.
 Old V = C, New V = C2 (bit is 0)

Power Analysis on RSA

RSA decryption: M = Cd mod N
Common algorithm for exponentiation is “square and multiply”.

def exponentiate(base C, exponent d):
V = 1
For each bit b in d (most to least significant):

V = V^2 mod N
If b==1: V = V*C mod N

return V

Ex: d=1010 in binary = 10 in decimal.
 Old V = C2, New V = C2*2 * C = C5 (bit is 1)

Power Analysis on RSA

RSA decryption: M = Cd mod N
Common algorithm for exponentiation is “square and multiply”.

def exponentiate(base C, exponent d):
V = 1
For each bit b in d (most to least significant):

V = V^2 mod N
If b==1: V = V*C mod N

return V

Ex: d=1010 in binary = 10 in decimal.
 Old V = C5, New V = C10 (bit is 0), as expected!

Power Analysis on RSA

Power Analysis on RSA
RSA decryption: M = Cd mod N
Common algorithm for exponentiation is “square and multiply”.

Square + multiply computation produces different power
usage profile than just squaring! Can distinguish between a 0
or 1 bit in secret key based on power usage!

AES Cache Timing Attack

AES’s computation accesses tables of values. Which indices are
accessed is based on the secret key.

If these tables are stored in memory shared by the attacker and
victim process (e.g. memory deduplication), attacker can load the
tables into cache, except for one index. Later attacker can load that
missing index.

● Cache miss = slower, victim didn’t use the missing index
● Cache hit = faster, victim used the missing index

Can learn the secret key based on indices accessed.

Did not cover
in lecture, just
for reference!

Other side channels used for attacks

● Timing
● Cache hits
● Power usage
● Data remanence (“deleted” but uncleared memory)
● Row Hammer (change off-limit memory by accessing

adjacent memory)
● Network side channels (recall global IP ID scanning from

Homework 4)

● Electromagnetic radiation
● Acoustics
● Optical

Backpage and Bitcoin:
Uncovering Human

Traffickers

Bitcoin

● Bitcoin ownership is pseudonymous
○ Exchange bitcoin using pseudonyms
○ Pseudonyms are public keys, tied to private key the user owns
○ Sign out-going transactions with private key

Blockchain

● Public, distributed, peer-to-peer, hash-chained audit log of all
transactions
○ Hash chain is public, broadcasted on peer-to-peer network, and

append-only

Blockchain cont’d
● How do you get bitcoin?

○ Mining
■ Append block to most recent/longest version of blockchain

○ Buy it

Sex Trafficking and the Internet

● Internet has opened new ways for traffickers to advertise and
find victims

● Broader goal : use computer science tools/techniques to fight
sex trafficking and slavery

● Detect traffickers from advertisements they pay for and post

Problem Statement

● Can I distinguish traffickers from independent sex workers on
classified ad sites?
○ Too much data

Backpage

● 2nd largest online classified ad site in the US
● 80% percent of the market for online sex ads in USA
● Running since 2004, listings all over the world
● Used by traffickers to advertise their victims
● Two forms of payment for adult entertainment listings

○ Bitcoin
○ Check/money order sent via regular mail

Sex Ad Flow

Goal

● Develop techniques to cluster sex ads by owner
○ Current best clustering is via hard-link; unreliable

Results
● Two different methodologies that combine the classifier, linking

technique and existing hard identifiers to group ads by owner
○ Stylometry classifier that distinguishes between sex ads posted

by the same vs. different authors with 90% TPR and 1% FPR
○ Side channel attack that takes advantage of leakages from the

Bitcoin blockchain and sex ad site to link a subset of sex ads to
Bitcoin public wallets and transactions

● Analyzed 4-weeks of scraped sex ads from Backpage
○ Rebuild the price of each Backpage sex ad, and analyze the

output of the two different methodologies

Stylometry model

Backpage Payment Flow

Timing Side Channel Attack

● Backpage posts ad onto its site one minute after payment
appears on Bitcoin mempool

Timing & Price Side Channel Attack

● Backpage’s pricing algorithm takes ad posting frequency and
location as variables, and can be reverse engineered

Persistent Bitcoin Identity Methodology
● Goal: map each ad to its true owner wallet
● Persistent Bitcoin Identity: any wallet that sends the change

from each of its transactions back into itself, and has one exact
match
○ Use stylometry model to distinguish non-exact match
○ All ads that match to this wallet are clustered under this PBI

4-week case study
● 26 ‘ground truth’ test ads

○ 25 required payment, 1 free
○ Placed from Dec 12th, 2016 to Dec 24th, 2016
○ Price range from $2 to $20
○ Posted in 27 distinct US regions

● Scraped all the sex ads in every US location every hour, for 4
weeks

● 741,443 unique ads scraped
○ 151,482 required payment
○ Placed from Dec 10th, 2016 to Jan 9th, 2017
○ Price range from $1 to >$100
○ Posted in 60 distinct US regions

4-week case study: PBI

● 11 ground truth ads paid using a PBI
○ 8 transactions were exact match for correct ad
○ 3 transactions matched two ads, one of which was the correct ad

● 249 PBI’s total
● 90 of those PBI’s had at least one exact match
● Results:

○ Links between hard identifiers
○ Evidence of networks across multiple locations
○ Owners of sex ad clusters spending a lot of money on ads

Conclusion

● Promising!
● First work to try to link specific purchases to specific

transactions on the Blockchain
● Lots of work left to be done

User	Authentication	&	Passwords

CS	161:	Computer	Security

Guest	Lecturer:	Grant	Ho
Instructor:	Prof.	Vern	Paxson

TAs:	Paul	Bramsen,	Apoorva Dornadula,	David	Fifield,	Mia	Gil	Epner,	David	
Hahn,	Warren	He,	Grant	Ho,	Frank	Li,	Nathan	Malkin,	Mitar Milutinovic,	

Rishabh Poddar,	Rebecca	Portnoff,	Nate	Wang	

http://inst.eecs.berkeley.edu/~cs161/
April	27,	2017

With	content	from	Raluca Ada	Popa &	Dan	Boneh

Attacks	&	Defenses	on	Password	Authentication
• Often	worry	about	3	classes	of	attacks	(threat	models)

1. Online	guessing
2. Server	compromise	(“offline	guessing”)
3. Client	password	compromise

Attacks	&	Defenses	on	Password	Authentication
• Often	worry	about	3	classes	of	attacks	(threat	models)

1. Online	guessing
2. Server	compromise	(“offline	guessing”)
3. Client	password	compromise

• We’ll	just	focus	on	the	last	two	threat	models	b/c	of	time	constraints

Threat	Model	1:	
Server	Compromise

Attacker	breaks	into	server	and	steals	password	database

(also	called	“offline	guessing	attacks”)

Threat	Model	#1:	Server	Compromised	

• Attacker	breaks	into	server	and	steals	password	database

• Happens	all	the	time	L

Threat	Model	#1:	Server	Compromised	

• Insecure	Defense:	Server	stores	encrypted	passwords	in	its	database

• But	server	needs	easy	access	to	secret	key	in	order	to	verify	users	when	they	
login
• So,	if	Mallory	breaks	into	the	server,	then	she	can	just	steal	secret	key	too!

Encrypting passwords	is	not a	secure	solution

Secure	Password	Storage
• Server	should	store	salted	+	hashed	passwords	(Section	6,	Problem	#1)
• Setup

1. During	account	registration,	server	generates	random	number	(salt)
2. Server	computes	h =	hash(salt,	password)
3. Server	stores	(username,	salt,	h)	and	deletes	user’s	password

• Authentication
• User’s	browser	sends	{username,	password}	to	server
• Server	computes	hash(salt,	password)	and	checks	if	it	matches	h

username salt h =	hash(salt,	password)
Alice 235545235 Hash(Alice’s	pwd,	235545235)

Bob 678632523 Hash(Alice’s	pwd,	678632523)

Secure	Password	Storage
• Secure	Defense:	Server	should	store	salted	+	hashed	passwords

username salt h =	hash(salt,	password)
Alice 235545235 Hash(Alice’s	pwd,	235545235)

Bob 678632523 Hash(Alice’s	pwd,	678632523)

• Attacker	steals	password	database,	but:
• Only	sees	salts	&	h’s:	salt	is	random	&	secure	hash	functions	are	one-way.
• Attacker	can	still	compute	big	table	of	guesses	for	Alice	&	check	for	matching	h:

‘123456’ Hash(‘123456’,	235545235)
‘password’ Hash(‘password’,	235545235)

‘aaaaaaaa’ Hash(‘aaaaaaa’,	235545235)

… …

But	salting forces	attacker	to	
re-compute	table	for	each	user	and	
prevents	pre-computation.

Secure	Password	Storage
• Secure	Defense:	Server	should	store	salted +	securely hash passwords

• The	secure	hash	function	should	also	be	slow to	compute
• Usually	we	want	fast	crypto	for	performance
• But	here	we	want	attacker	to	wait… and	wait… and	wait… for	guessing	to	succeed.
• Examples:	Argon,	bcrypt,	scrypt

• Conceptually,	Slow-Hash(x)	=	hash(hash(hash(hash(…(hash(x)))))
• where	hash	is	a	regular	secure	hash	(e.g.,	SHA-256	or	HMAC)

• If	Slow-Hash	is	1,000	times	slower,	attack	that	previously	took	1	day	now	
takes	~3	years

Threat	Model	2:	
Client	Password	Compromise

Attacker	obtains	Alice’s	password
• Phishing
• Surveillance	camera	(airport,	cafe,	etc.)	records	Alice	typing	

password
• …

Threat	Model	#2:	Password	Compromise

• Defense:	Two-factor	authentication	(2FA)
1. Something	you	knows	(password)
2. Something	you	have	(smartphone/authentication	device)
3. Something	you	are	(fingerprints/iris	scanner)
• Require	2	methods	from	above

• Most	common	2FA:	password	+	authentication	device
• User	enters	password	at	login
• If	password	correct,	user	then	needs	to	use	authentication	device

• Let’s	examine	some	2FA	designs	for	the	authentication	device

Common	2FA	Designs
1. Text	message:	server	generates	random	number	&	texts	it	to	you

• Least	secure	form	of	2FA:	
• Hijack	phone	number
• Mobile	malware	or	any	app	w/	text	message	permissions	(e.g.	Tinder, Uber,	etc.)
• …

Common	2FA	Designs

1. Text	message:	server	generates	random	number	&	texts	it	to	you
• Least	secure:	hijack	phone	number	or	hack	telephone	company	(e.g.,	nation	state)

2. Authenticator	apps	(more	secure)
• Google	Authenticator,	Duo,	etc.
• Protocols:

• S/KEY
• TOTP
• Push	notification

The	S/Key	Protocol:	Setup

Client	gets:
(1) k

(2) n	(total	#	codes)

Server	stores:
Only	vk

k,	n
vk =
H(n)(k)

1. Server	generates	n =	#	of	2FA	codes	(e.g.,	10,000)	
and	a	random	value	k

2. 2FA	app	(client)	obtains	n	and	k	(e.g.,	scanning	
QR	code)

3. Server	computes	&	stores	vk =	H(n) (k)	and	then	
deletes k	&	n

H(n) (k)	=	H(H(H(…(H(k)))),	hash	for	n	times

The	S/Key	Protocol:	Authenticating	to	Server

Client	stores:
(1) k

(2) n	(total	#	codes)
(3) j	(#	total	logins)

Server	stores:
Only	vk

k,	n,	j H(n-1)(k) H(n)(k)

vk starts	here

H(n-2)(k)H(k)

sk #1sk #2

1. Client	computes	&	sends	sk =	H(n-j)(k)
2. Server	checks	if	H(sk)	=	vk
3. Server	updates	vk =	sk
4. Repeat	1-3

Secure	even	if	attacker	breaks	into	server	and	
steals	vk for	each	user!

vk after	login	#1vk after	login	#2

Common	2FA	Designs

1. Text	message:	server	generates	random	number	&	texts	it	to	you
• Least	secure:	hijack	phone	number	or	hack	telephone	company	(e.g.,	nation	state)

2. Authenticator	apps	(more	secure)
• Common	protocols:	S/KEY,	TOTP,	Push	notification
• Still	vulnerable	to	phishing!

1. Phishing	page	asks	for	user’s	password
2. Next,	phishing	page	asks	user	to	enter	2FA	code
3. Attacker	then	uses	both	to	login

Common	2FA	Designs

1. Text	message:	server	generates	random	number	&	texts	it	to	you
• Least	secure:	hijack	phone	number	or	hack	telephone	company	(e.g.,	nation	state)

2. Authenticator	app	(more	secure)
• Push	notification,	S/KEY,	TOTP
• Still	vulnerable	to	phishing!

3. Hardware	tokens:	challenge-response	(most	secure)
• Hardware	device	that’s	plugged	into	laptop
• Can	protect	against	phishing	attacks

Challenge-Response	(General)

• General	protocols	for	authentication
• A	“prover”	wants	to	authenticate	to	a	“challenger”

• E.g.,	a	user	(prover)	wants	to	login	to	Gmail	(challenger)	as	Alice

ChallengerProver
1)	Challenger	sends	a	challenge	msg (e.g.,	username	and	pwd?)

2)	Prover	sends	response	that	only	real	prover	can	generate

(e.g.,	username:	“alice”,	password:	“RFaIVD@#TSDVI*!!F”)

2FA	Challenge-Response
• Hardware	2FA	token	has	a	public	&	private	key	pair	embedded	in	device

A. Setup
1. Alice’s	browser	gets	K =	2FA	token’s	public	key	and	sends	K to	server
2. Server	stores	(username,	K)	in	its	2FA	database

B. Authentication

1a)	Server	sends	random	N1b)	Browser	fwd’s N	to	token

2)	Token	signs	{N}!"#

3)	User	taps	on	token,	which	
then	fwd’s {N}!"# to	browser

3b)	Browser	sends	{N}!"#

4)	Server	checks	that	N	
matches	1a)	and	verifies	
signature	on	{N}!"#

Adding	Phishing	Resistance

2)	Token	signs	{N,	D}!"#

1b)	Browser	fwd’s N	to	token

AND	it	includes	D	=	domain	of	
actual	webpage	in	browser

3)	User	taps	on	token,	which	
then	fwd’s {N,	D}!"# to	browser

1a)	Server	sends	random	number	N

3b)	Browser	sends	{N,	D}!"#

4)	Server	checks:
• Dmatches	its	domain
• N	matches	what	it	sent
• Valid	signature	on	{N,	D}!"#

Phishing	Attack	Now	Fails!

• During	phishing	attack,	browser	will	be	at	website	w/	domain	
D’	=	gmai1.com,	instead	of	real	domain	D	=	gmail.com

Phishing	Attack	Now	Fails!

1b)	Browser	fwd’s N	to	token

AND	it	includes	D’ =	domain	
of	actual	webpage	in	browser

2)	Token	signs	{N,	D’}!"#

3)	User	taps	on	token,	which	
then	fwd’s {N,	D’}!"# to	browser

1a)	Gmail	sends	random	number	N

3b)	Browser	sends	{N,	D’}!"#

4)	Gmail	checks:
• N	matches	what	it	sent
• Valid	signature	on	{N,	D’}!"#

• But	D’ doesn’t	match	its	domain!

• During	phishing	attack,	browser	will	be	at	website	w/	domain	D’	=	gmai1.com,	
instead	of	real	domain	D	=	gmail.com

Practical	Advice	for	Future	Security	Engineers

Applicable	to	your	users	and	your	employees:

1. Use	HTTPS	(prevent	MITM	from	seeing	passwords)

2. Securely	store	passwords	(Threat	Model	#1)

3. Enable	2FA,	ideally	hardware	tokens	(Threat	Model	#2)

4. Securely	check	passwords	&	rate	limit	(not	covered	b/c	of	time)

5. Incorporate	detection	systems	if	you	can	(not	covered	b/c	of	time)
1. Access	logging
2. Spearphishing detection
3. Honey	accounts/Tripwire

Computing on private data

CS 161: Computer Security
Instructor: Prof. Vern Paxson

TAs: Paul Bramsen, Apoorva Dornadula, David Fifield, Mia Gil Epner, David Hahn, Warren He,
Grant Ho, Frank Li, Nathan Malkin, Mitar Milutinovic, Rishabh Poddar, Rebecca Portnoff, Nate Wang

http://inst.eecs.berkeley.edu/~cs161/
April 27, 2017

Guest Lecturer: Rishabh Poddar

With content from
Raluca Ada Popa, Dan Boneh, and Taesoo Kim

Many decisions are made on
private data

• User data (e.g. email, social)
• Medical data
• Financial data
• Location data

Data stored unencrypted in order to allow
applications to compute queries / make decisions

Defense: try to build walls around the data (e.g.
access control, firewalls, IDS, etc.)

Attackers eventually break
into systems

• Sometimes, they even obtain root
access or have admin privilege

How can we prevent attackers from obtaining the
data even if they gain access to the system?

The data should be encrypted at all times!
– Not just sometimes when the data is at rest (i.e.

when no computations are being performed)

Problem: How does the server carry out its
service (i.e. perform computations on the data)
if the data is encrypted?

Two main approaches

1. Compute directly on encrypted data (uses
specialized cryptography)

Which approach to use?
– Security: confidentiality / integrity

guarantees
– Functionality: what computations can be

supported
– Performance: how efficient is it to compute

2. Shielded computation on data (uses
specialized hardware)

Approach #1: Computation on
encrypted data

Computation on encrypted
data

server

client
Secret

SecretResultResult

Secret

Server performs computations on the encrypted data
without ever decrypting it

Computation on encrypted
data

• Option #1: Property preserving encryption

Computation on encrypted
data

• Option #1: Property preserving encryption
– Deterministic encryption:

If x	=	y	 then Enc(x)	=	Enc(y)

Computation on encrypted
data

• Option #1: Property preserving encryption
– Deterministic encryption:

If x	=	y	 then Enc(x)	=	Enc(y)

Can compute queries such as:
SELECT * FROM table WHERE name = ‘Alice’

Computation on encrypted
data

• Option #1: Property preserving encryption
– Deterministic encryption:

If x	=	y	 then Enc(x)	=	Enc(y)

Can compute queries such as:
SELECT * FROM table WHERE name = 0xfadc…

Computation on encrypted
data

• Option #1: Property preserving encryption
– Deterministic encryption:

If x	=	y		then Enc(x)	=	Enc(y)

– Order preserving encryption:
If x	>	y then Enc(x)	>	Enc(y)

Can compute queries such as:
SELECT * FROM table WHERE name = 0xfadc…

Computation on encrypted
data

• Option #1: Property preserving encryption
– Deterministic encryption:

If x	=	y		then Enc(x)	=	Enc(y)

– Order preserving encryption:
If x	>	y then Enc(x)	>	Enc(y)

Can compute queries such as:
SELECT * FROM table WHERE name = 0xfadc…

Can compute queries such as:
SELECT * FROM table WHERE age > 10

Computation on encrypted
data

• Option #1: Property preserving encryption
– Deterministic encryption:

If x	=	y		then Enc(x)	=	Enc(y)

– Order preserving encryption:
If x	>	y then Enc(x)	>	Enc(y)

Can compute queries such as:
SELECT * FROM table WHERE name = 0xfadc…

Can compute queries such as:
SELECT * FROM table WHERE age > 0x1d3e…

Computation on encrypted
data

• Option #1: Property preserving encryption
– Deterministic encryption:

If x	=	y		then Enc(x)	=	Enc(y)

– Order preserving encryption:
If x	>	y	then Enc(x)	>	Enc(y)

Can compute queries such as:
SELECT * FROM table WHERE name = 0xfadc…

Can compute queries such as:
SELECT * FROM table WHERE age > 0x1d3e…

Performance
• Nearly as fast as computing on plaintext

Security
• Leaks some information about the plaintexts

(e.g. frequency distribution of values, or order of
ciphertexts)

Functionality
• Very limited: e.g. only equality for deterministic

encryption, range comparison for order
preserving encryption

Computation on encrypted
data

• Option #2: Partially homomorphic
encryption

Computation on encrypted
data

• Option #2: Partially homomorphic
encryption

• ElGamal cryptosystem (enables multiplication
over ciphertexts)

Enc(x)	.	Enc(y)	=	Enc(x	.	y)

Computation on encrypted
data

• Option #2: Partially homomorphic
encryption

• ElGamal cryptosystem (enables multiplication
over ciphertexts)

Enc(x)	.	Enc(y)	=	Enc(x	.	y)
• Paillier cryptosystem (enables addition over

ciphertexts)
Enc(x)	+	Enc(y)	=	Enc(x	+	y)

Computation on encrypted
data

• Option #2: Partially homomorphic
encryption

Performance
• Reasonably efficient, but not as fast as

computing on plaintext
Security

• Similar level of confidentiality guarantees as
standard AES-based encryption

Functionality
• Very limited: only specific operations can be

computed (i.e. can only add, or can only
multiply; can’t do both)

Computation on encrypted
data

• Option #3: Fully homomorphic encryption
– Enables arbitrary functions

F	(Enc(x),	Enc(y))	=	Enc(F	(x,	y))

Computation on encrypted
data

• Option #3: Fully homomorphic encryption
– Enables arbitrary functions

F	(Enc(x),	Enc(y))	=	Enc(F	(x,	y))

Performance
• Prohibitively slow (currently 6 orders of

magnitude slower)
Security

• Similar level of confidentiality guarantees as
standard AES-based encryption

Functionality
• Allows arbitrary computations

Approach #2: Shielded
computation on data using

Intel Software Guard
Extensions (SGX)

(Extensions to Intel processors)

Intel SGX

• Feature #1: Can run code in hardware-
protected containers (called enclaves)

Intel SGX

• Feature #1: Can run code in hardware-
protected containers (called enclaves)

server

client
Secret

ResultResult

Secret

Secret

enclave

Intel SGX

• Feature #1: Can run code in hardware-
protected containers (called enclaves)
– Secure region of address space, protected by the

processor from all external software access (even from the
operating system)

Intel SGX

• Feature #1: Can run code in hardware-
protected containers (called enclaves)
– Secure region of address space, protected by the

processor from all external software access (even from the
operating system)

– Code and data in enclave region of main memory always
encrypted using processor specific keys

– Decrypted only within the CPU package (i.e. when loaded
into registers / cache)

Intel SGX

• Feature #1: Can run code in hardware-
protected containers (called enclaves)
– Secure region of address space, protected by the

processor from all external software access (even from the
operating system)

– Code and data in enclave region of main memory always
encrypted using processor specific keys

– Decrypted only within the CPU package (i.e. when loaded
into registers / cache)

Code and data loaded into an enclave is isolated
from the rest of the system

CPU Package
System Memory

Enclave

Memory
Encryption
Engine (MEE)

Snooping

Access
from OSEncrypted

code/data

Problem: How to verify correct code has been loaded?
• Enclave code allowed to access unencrypted data
• Malicious / tampered code in enclave could exfiltrate data (i.e.

leak it to the attacker)

SGX: How enclaves work

Intel SGX

Extensions to Intel processors that support:
• Feature #2: Attestation

Intel SGX

• Feature #2: Attestation
– Prove to local / remote system that the correct

code has been loaded into the enclave
(i.e. verify the integrity of the enclave using a
hash measurement of the loaded code/data)

Intel SGX

• Feature #2: Attestation
– Prove to local / remote system that the correct

code has been loaded into the enclave
(i.e. verify the integrity of the enclave using a
hash measurement of the loaded code/data)

– Verify that measurement was generated by an
enclave running on the same platform (using a
MAC)

Intel SGX

• Feature #2: Attestation
– Prove to local / remote system that the correct

code has been loaded into the enclave
(i.e. verify the integrity of the enclave using a
hash measurement of the loaded code/data)

– Verify that measurement generated by an
enclave running on the same platform (using a
MAC)

– Uses a special quoting enclave for this purpose
that signs the measurement and sends it to the
client for verification

33

Target Enclave

Quoting
Enclave

SGX
CPU

ClientServer

1. Request

SGX: How attestation works

34

Target Enclave

Quoting
Enclave

SGX
CPU

ClientServer

1. Request
2. Compute
measurement

MAC

Hash

SGX: How attestation works

• Can also establish a secure channel between client and
the enclave by exchanging Diffie-Hellman keys as part of
the attestation process

35

Target Enclave

Quoting
Enclave

SGX
CPU

ClientServer

1. Request
2. Compute
measurement

3. Send measurement

SGX: How attestation works

MAC

Hash

• Can also establish a secure channel between client and
the enclave by exchanging Diffie-Hellman keys as part of
the attestation process

36

Target Enclave

Quoting
Enclave

SGX
CPU

ClientServer

1. Request
2. Compute
measurement

3. Send measurement

MAC

Hash

SGX: How attestation works

4. Verify MAC

• Can also establish a secure channel between client and
the enclave by exchanging Diffie-Hellman keys as part of
the attestation process

37

Target Enclave

Quoting
Enclave

SGX
CPU

ClientServer

1. Request
2. Compute
measurement

3. Send measurement

4. Verify MAC

5. Sign with Intel’s key

SGX: How attestation works

MAC

Hash

• Can also establish a secure channel between client and
the enclave by exchanging Diffie-Hellman keys as part of
the attestation process

38

Target Enclave

Quoting
Enclave

SGX
CPU

ClientServer

1. Request
2. Compute
measurement

3. Send measurement

6. Send signature

5. Sign with Intel’s key

SGX: How attestation works

MAC

Hash

4. Verify MAC

Intel SGX

• Minimal TCB (trusted computing base):
– Only the processor + the code loaded into the

enclave need to be trusted
– Nothing else (DRAM, peripherals, operating

system, etc.) needs to be trusted

Intel SGX

• Minimal TCB (trusted computing base):
– Only the processor + the code loaded into the

enclave need to be trusted
– Nothing else (DRAM, peripherals, operating

system, etc.) needs to be trusted

So even if an attacker manages to gain root access
on the server, won’t be able to learn the data

Summary

Comparison
Computation with
cryptography

Computation
with SGX

No need to trust server-side
hardware

Need to trust Intel’s processor

No need to trust server-side
software

Software running in enclave can leak
unencrypted data
No need to trust other privileged
software (including the OS)

Can execute only a few simple
functions efficiently

Runs arbitrary computation at
processor speeds

Still vulnerable to side-channels Still vulnerable to side-channels

Thank you, and good luck!

