
Overflows, Injection, and
Memory Safety

CS 161: Computer Security
Prof. Vern Paxson

TAs: Paul Bramsen, Apoorva Dornadula,

David Fifield, Mia Gil Epner, David Hahn, Warren He,
Grant Ho, Frank Li, Nathan Malkin, Mitar Milutinovic,

Rishabh Poddar, Rebecca Portnoff, Nate Wang

http://inst.eecs.berkeley.edu/~cs161/
January 24, 2017

Common Assumptions When
Discussing Attacks

•  (Note, these tend to be pessimistic … but prudent)
•  Attackers can interact with our systems without

particular notice
–  Probing (poking at systems) may go unnoticed …
– … even if highly repetitive, leading to crashes, and

easy to detect
•  It’s easy for attackers to know general information

about their targets
–  OS types, software versions, usernames, server ports,

IP addresses, usual patterns of activity, administrative
procedures

Common Assumptions, con’t

•  Attackers can obtain access to a copy of a given
system to measure and/or determine how it works

•  Attackers can make energetic use of automation
–  They can often find clever ways to automate

•  Attackers can pull off complicated coordination
across a bunch of different elements/systems

•  Attackers can bring large resources to bear if req’d
–  Computation, network capacity
–  But they are not super-powerful (e.g., control entire ISPs)

Common Assumptions, con’t

•  If it helps the attacker in some way, assume they
can obtain privileges
–  But if the privilege gives everything away (attack

becomes trivial), then we care about unprivileged attacks

•  The ability to robustly detect that an attack has
occurred does not replace desirability of preventing

•  Infrastructure machines/systems are well protected
(hard to directly take over)
–  So a vulnerability that requires infrastructure compromise

is less worrisome than same vulnerability that doesn’t

Common Assumptions, con’t

•  Network routing is hard to alter … other than with
physical access near clients (e.g., “coffeeshop”)
–  Such access helps fool clients to send to wrong place
–  Can enable Man-in-the-Middle (MITM) attacks

•  We worry about attackers who are lucky
–  Since often automation/repetition can help “make luck”

•  Just because a system does not have apparent
value, it may still be a target

•  Any others?

Thinking about overflows

#293 HRE-THR 850 1930
ALICE SMITH
COACH

SPECIAL INSTRUX: NONE

#293 HRE-THR 850 1930
ALICE SMITHHHHHHHHHHH
HHACH

SPECIAL INSTRUX: NONE

How could Alice exploit this?
Find a partner and talk it through.

#293 HRE-THR 850 1930
ALICE SMITH
FIRST

SPECIAL INSTRUX: NONE

#293 HRE-THR 850 1930
ALICE SMITH
FIRST

SPECIAL INSTRUX: GIVE
PAX EXTRA CHAMPAGNE.

Passenger last name:
“Smith First Special Instrux: Give Pax Extra Champagne.”

char	name[20];	
	
void	vulnerable()	{	
		...	
		gets(name);	
		...	
}	

char	name[20];	
char	instrux[80]	=	"none";	
	
void	vulnerable()	{	
		...	
		gets(name);	
		...	
}	

char	name[20];	
int		seatinfirstclass	=	0;	
	
void	vulnerable()	{	
		...	
		gets(name);	
		...	
}	

char	name[20];	
int		authenticated	=	0;	
	
void	vulnerable()	{	
		...	
		gets(name);	
		...	
}	

char	line[512];	
char	command[]	=	"/usr/bin/finger";	
	
void	main()	{	
		...	
		gets(line);	
		...	
		execv(command,	...);	
}	

char	name[20];	
int	(*fnptr)();	
	
void	vulnerable()	{	
		...	
		gets(name);	
		...	
}	

Walking	Through	
Overflow	Vulnerabili5es	

(See separate slides)

void	vulnerable()	{	
		char	buf[64];	
		...	
		gets(buf);	
		...	
}	

void	still_vulnerable?()	{	
		char	*buf	=	malloc(64);	
		...	
		gets(buf);	
		...	
}	

void	safe()	{	
		char	buf[64];	
		...	
		fgets(buf,	64,	stdin);	
		...	
}	

void	safer()	{	
		char	buf[64];	
		...	
		fgets(buf,	sizeof	buf,	stdin);	
		...	
}	

void	vulnerable(int	len,	char	*data)	{	
		char	buf[64];	
		if	(len	>	64)	
				return;	
		memcpy(buf,	data,	len);	
}	

memcpy(void	*s1,	const	void	*s2,	size_t	n);	

Assume these are both under
the control of an attacker.

void	safe(size_t	len,	char	*data)	{	
		char	buf[64];	
		if	(len	>	64)	
				return;	
		memcpy(buf,	data,	len);	
}	

void	f(size_t	len,	char	*data)	{	
		char	*buf	=	malloc(len+2);	
		if	(buf	==	NULL)	return;	
		memcpy(buf,	data,	len);	
		buf[len]	=	'\n';	
		buf[len+1]	=	'\0';	
}	

Vulnerable!
If len = 0xffffffff, allocates only 1 byte

Is it safe? Talk to your partner.

void	vulnerable()	{	
		char	buf[64];	
		if	(fgets(buf,	64,	stdin)	==	NULL)	
				return;	
		printf(buf);	
}	

printf("you	scored	%d\n",	score);		
	

rip

sfp

sfp

printf()

0x8048464

0x8048464

score

printf(“you scored %d\n”, score);

o yu

c sor

d e%

\n d\0

printf("a	%s	costs	$%d\n",	item,	price);		
	

rip

sfp

sfp

printf()

0x8048464

0x8048464

item

printf("a %s costs $%d\n", item, price);

a%s

cos

s t$

d %\n\0

price

printf("100%	dude!");	
	

Fun With printf Format Strings …
Format argument is missing!

rip

sfp

sfp

printf()

0x8048464

0x8048464

printf(“100% dude!”);

0 10%

dud

! e\0

???

printf("100%	dude!");	
	⇒	prints value 4 bytes above retaddr as integer	

printf("100%	sir!");	
	⇒	prints bytes pointed to by that stack entry
 up through first NUL	

printf("%d	%d	%d	%d	...");	
	⇒	prints series of stack entries as integers	

printf("%d	%s");	
	⇒	prints value 4 bytes above retaddr plus bytes

 pointed to by preceding stack entry	
printf("100%	nuke’m!");	

Fun With printf Format Strings …

What does the %n format do??

int	report_cost(int	item_num,	int	price)	{	
		int	colon_offset;	
		printf("item	%d:%n	$%d\n",	item_num,	
																	&colon_offset,	price);		
		return	colon_offset;	
}	
	
report_cost(3,	22)	prints	"item	3:	$22"	

	and returns the value 7
	
report_cost(987,	5)	prints	"item	987:	$5"	

	and returns the value 9

%n writes the number of characters printed so far
into the corresponding format argument.

printf("100%	dude!");	
	⇒	prints value 4 bytes above retaddr as integer	

printf("100%	sir!");	
	⇒	prints bytes pointed to by that stack entry
 up through first NUL	

printf("%d	%d	%d	%d	...");	
	⇒	prints series of stack entries as integers	

printf("%d	%s");	
	⇒	prints value 4 bytes above retaddr plus bytes

 pointed to by preceding stack entry	
printf("100%	nuke’m!");	

	⇒	writes the value 3 to the address pointed
 to by stack entry

Fun With printf Format Strings …

void	safe()	{	
		char	buf[64];	
		if	(fgets(buf,	64,	stdin)	==	NULL)	
				return;	
		printf("%s",	buf);	
}	

