Overflows, Injection, and
Memory Safety

CS 161: Computer Security

Prof. Vern Paxson

TAs: Paul Bramsen, Apoorva Dornadula,
David Fifield, Mia Gil Epner, David Hahn, Warren He,
Grant Ho, Frank Li, Nathan Malkin, Mitar Milutinovic,

Rishabh Poddar, Rebecca Portnoff, Nate Wang

http://inst.eecs.berkeley.edu/~cs161/

Common Assumptions When
Discussing Attacks

* (Note, these tend to be pessimistic ... but prudent)

« Attackers can interact with our systems without
particular notice
— Probing (poking at systems) may go unnoticed ...
— ... even if highly repetitive, leading to crashes, and
easy to detect
 |It's easy for attackers to know general information

about their targets
— OS types, software versions, usernames, server ports,

|IP addresses, usual patterns of activity, administrative
procedures

Common Assumptions, con’t

Attackers can obtain access to a copy of a given
system to measure and/or determine how it works

Attackers can make energetic use of automation
— They can often find clever ways to automate

Attackers can pull off complicated coordination
across a bunch of different elements/systems
Attackers can bring large resources to bear if req’'d

— Computation, network capacity
— But they are not super-powerful (e.g., control entire ISPs)

Common Assumptions, con’t

 If it helps the attacker in some way, assume they
can obtain privileges

— But if the privilege gives everything away (attack
becomes trivial), then we care about unprivileged attacks

* The ability to robustly that an attack has
occurred does not replace desirability of preventing

* Infrastructure machines/systems are well protected
(hard to directly take over)

— So a vulnerability that requires infrastructure compromise
IS less worrisome than same vulnerability that doesn’t

Common Assumptions, con’t

Network routing is hard to alter ... other than with
physical access near clients (e.g., “coffeeshop”)

— Such access helps fool clients to send to wrong place
— Can enable Man-in-the-Middle (MITM) attacks

We worry about attackers who are lucky

— Since often automation/repetition can help “make luck”

Just because a system does not have apparent
value, it may still be a

Any others?

Thinking about overflows

‘ Traveler Information

Traveler 1 - Adults (age 18 to 64)

To comply with the TSA Secure Flight program, the traveler information listed here must exactly match the
information on the government-issued photo ID that the traveler presents at the airport.

Title (optional): First Name: Middle Name: Last Name:
_br. 4] Alice Smith
Gender: Date of Birth: Travelers are required to enter a middle name/Initial If one Is

listed on thelr government-Issued photo 1D.
| Female %] 01/24/93

Some younger travelers are not required to present an ID
when travellng within the U.S. Learn more

+ Known Traveler Number/Pass ID (optional): 2]

+ Redress Number (optional): 2]

Seat Request:
@® No Preference () Aisle () Window

‘ Traveler Information

Traveler 1 - Adults (age 18 to 64)

To comply with the TSA Secure Flight program, the traveler information listed here must exactly match the
information on the government-issued photo ID that the traveler presents at the airport.

Title (optional): First Name: Middle Name: Last Name:
Cor. %) Alice Smithhhhhhhhhhhhh
Gender: Date of Birth: Travelers are required to enter a middle name/Initial If one Is

listed on thelr government-issued photo 1D.
| Female 4] 01/24/93

Some younger travelers are not required to present an ID
when travellng within the U.S. Learn more

+ Known Traveler Number/Pass ID (optional): 2]

+ Redress Number (optional): [2]

Seat Request:
@™ No Preference () Aisle () Window

How could Alice exploit this?
Find a partner and talk it through.

‘ Traveler Information

Traveler 1 - Adults (age 18 to 64)

To comply with the TSA Secure Flight program, the traveler information listed here must exactly match the
information on the government-issued photo ID that the traveler presents at the airport.

Title (optional): First Name: Middle Name: Last Name:
| Dr. QQ‘ Alice Smith First

. . Travelers are required to enter a middle name/Initial If one Is
Gender: Date of Birth: listed on thelr government-Issued photo ID.
(Female 3] 01/24/93

Some younger travelers are not required to present an ID
when traveling within the U.S. Learn more

+ Known Traveler Number/Pass ID (optional): 2]

+ Redress Number (optional): [2]

Seat Request:
@® No Preference () Aisle () Window

Passenger last name:
“Smith First Special Instrux: Give Pax Extra Champagne.”

char name[20];
void vulnerable() {

gets(name);

char name[20];
char instrux[80] = "none";

void vulnerable() {

gets(name);

char name[20];
int seatinfirstclass = 0;

void vulnerable() {

gets(name);

char name[20];
int authenticated = 0;

void vulnerable() {

gets(name);

char 1line[512];
char command[] = "/usr/bin/finger"”;

void main() A
gets(line);

execv(command, ...);

}

char name[20];
int (*fnptr)();

void vulnerable() {

gets(name);

Walking Through
Overflow Vulnerabilities

(See separate slides)

Rank |Score ID Name

[1] [93.8 |cwE-89 zggrlj)?:jre?ggrt‘r:;lization of Special Elements used in an SQL Command
[2] 183.3]CWE-78]?ggr(é%i:r::gg?:?:gt?;n%f Special Elements used in an OS Command |
[3] |79.0 |CWE-120 |Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
[4] | 777]CWE-79]?gfgcs)s-est;tl(\elegjct:i&;l;iz:;c))n of Input During Web Page Generation |
[5] |76.9 |CWE-306 [Missing Authentication for Critical Function

[6] |76.8 |CWE-862 [Missing Authorization

[7] |75.0 |CWE-798 |[Use of Hard-coded Credentials

[8] |75.0 |CWE-311 [Missing Encryption of Sensitive Data

[9] |74.0 |CWE-434 [Unrestricted Upload of File with Dangerous Type

[10] (73.8 |CWE-807 [Reliance on Untrusted Inputs in a Security Decision

[11] |73.1 |CWE-250 [Execution with Unnecessary Privileges

[12] |70.1 |CWE-352 [Cross-Site Request Forgery (CSRF)

[13] [69.3 |cwE-22 #r:wa[z/l:rz:')umitation of a Pathname to a Restricted Directory ('Path
[14] |68.5 |CWE-494 [Download of Code Without Integrity Check

[15] [67.8 |CWE-863 |Incorrect Authorization

[16]

66.0

CWE-829

Inclusion of Functionality from Untrusted Control Sphere

void vulnerable() {
char buf[64];

gets(buf);

void still vulnerable?() {
char *buf = malloc(64);

gets(buf);

IE's Role in the Google-China War

By Richard Adhikari
TechNewsWorld
01/15/10 12:25 PM PT

The hack attack on Google that set off the company's
ongoing standoff with China appears to have come
through a zero-day flaw in Microsoft's Internet Explorer
browser. Microsoft has released a security advisory, and
researchers are hard at work studying the exploit. The attack appears to consist
of several files, each a different piece of malware.

Computer security companies are scurrying to cope with the fallout from the Internet
Explorer (IE) flaw that led to cyberattacks on Google (Nasdaq: GOOG) and its corporate
and individual customers.

The zero-day attack that exploited IE is part of a lethal cocktail of malware that is keeping
researchers very busy.

"We're discovering things on an up-to-the-minute basis, and we've seen about a dozen
files dropped on infected PCs so far," Dmitri Alperovitch, vice president of research at
McAfee Labs, told TechNewsWorld.

The attacks on Google, which appeared to originate in China, have sparked a feud
between the Internet giant and the nation's government over censorship, and it could
result in Google pulling away from its business dealings in the country.

Pointing to the Flaw

he vulnerability in IE is an invalid pointer reference, Microsoft (Nasdaq: MSFT) said Iin
security advisory 979352, which it issued on Thursday. Under certain conditions, the
invalid pointer can be accessed after an obJect is deleted, the advisory states. In spegi
crafted attac . can allow
remote execution of code when the fIaw is epr0|ted

void safe() {
char buf[64];

fgets(buf, 64, stdin);

void safer() {
char buf[64];

fgets(buf, sizeof buf, stdin);

Assume these are both under
the control of an attacker.

void vulnerable{int len, char *data){

char buf[64];
if (len > 64)
return;
memcpy (buf, data, len);

}

memcpy(void *sl1, const void *s2, n);

void safe(size t len, char *data) {
char buf[64];
if (len > 64)
return;
memcpy (buf, data, len);

}

void f(size t len, char *data) {
char *buf = malloc(len+2);
if (buf == NULL) return;
memcpy (buf, data, len);
buf[len] =
buf[len+l] =

}

Is it safe? Talk to your partner.

Vulnerable!
If len = oxfffff{ff, allocates only 1 byte

Broward Vote-Counting Blunder Changes Amendment Result

POSTED: 1:34 pm EST November 4, 2004

BROWARD COUNTY, Fla. -- The Broward County Elections Department has egg on its face today
after a computer glitch misreported a key amendment race, according to WPLG-TV in Miami.

Amendment 4, which would allow Miami-Dade and Broward counties
to hold a future election to decide if slot machines should be allowed at
racetracks, was thought to be tied. But now that a computer glitch for
machines counting absentee ballots has been exposed, it turns out the
amendment passed.

¢soltware 1s not geared to count more than 32,000 votes in a
precinct. So what happens when it gets to 32,000 is the software starts { 2 ,
qunting backward," said Broward County Mayor Ilene Lieberman. Broward County Mayor
Ilene Lieberman says
voting counting error is an
"embarrassing mistake."

That means that Amendment 4 passed in Broward County by more
than 240,000 votes rather than the 166,000-vote margin reported
Wednesday night. That increase changes the overall statewide results
in what had been a neck-and-neck race, one for which recounts had
been going on today. But with news of Broward’s error, it’s clear amendment 4 passed.

void vulnerable() {
char buf[64];
if (fgets(buf, 64, stdin) == NULL)
return;

}

printf("you scored %d\n", score);

—
| |
printf (“you scored %d\n”, score); ! :
H—

> score

»| 0x8048464

rip

printf ()

\0 (\n| d
$ d| e
r (o) (@ S

u| o |y [« 0x8048464

printf("a %s costs $%d\n", item, price);

H—
| |
printf("a %s costs $%d\n", item, price); | '
price
> item
» 0x8048464

rip

printf ()

\O|\n| d| %

s | % a [«— 0x8048464

Fun With printf Format Strings ...

printf("100% dude _

printf ("100% dude!”);

> 2?7
» 0x8048464
rip
printf ()
\O | !
d|u|d

0x8048464

Fun With printf Format Strings ...

printf("100% dude!");
=> prints value 4 bytes above retaddr as integer
printf("100% sir!");
=> prints bytes pointed to by that stack entry
up through first NUL

printf("%d %d %d %d ...");
=> prints series of stack entries as integers
printf("%d %s");
= prints value 4 bytes above retaddr plus bytes
pointed to by preceding stack entry

printf("100% nuke m!");

%n writes the number of characters printed so far
into the corresponding format argument.

int report cost(int item num, int price) {
int colon_offset;
printf("item %d:%n $%d\n", item num,
&colon_offset, price);
return colon offset;

¥

report _cost(3, 22) prints "item 3: $22"
and returns the value 7

report cost(987, 5) prints "item 987: $5"
and returns the value 9

Fun With printf Format Strings ...

printf("100% dude!");
=> prints value 4 bytes above retaddr as integer
printf("100% sir!");
=> prints bytes pointed to by that stack entry
up through first NUL

printf("%d %d %d %d ...");
= prints series of stack entries as integers
printf("%d %s");

= prints value 4 bytes above retaddr plus bytes
pointed to by preceding stack entry

printf("100% nuke m!");
= writes the value 3 to the address pointed
to by stack entry

void safe() {
char buf[64];
if (fgets(buf, 64, stdin) == NULL)
return;
printf("%s", buf);
}

