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Demo: Phishing via 
Browser Tab Manipulation 

Sneakiness 



The Problem of Phishing 

•  Arises due to mismatch between reality & user’s: 
–  Perception of how to assess legitimacy
–  Mental model of what attackers can control

•  Both Email and Web

•  Coupled with:
–  Deficiencies in how web sites authenticate

•  In particular, “replayable” authentication that is vulnerable to 
theft

•  Attackers have many angles …



1.  Text and left-side pixels fully under attacker control 
2.  Domain name cannot be altered (but can be misleading!) 
3.  Path after the domain name fully under attacker control 
4.  All pixels fully under attacker control 





Homograph Attacks	

•  International domain names can use international 
character set 
–  E.g., Chinese contains characters that look like / . ? = 

•  Attack: Legitimately register var.cn … 
•  … buy legitimate set of HTTPS certificates for it … 
•  … and then create a subdomain: 

    www.pnc.com⁄webapp⁄unsec⁄homepage.var.cn  

This is one subdomain 



Check for a padlock?	







Check for “green glow” in address bar? 



Check for Everything? 



“Browser in Browser” 

Apparent browser is just 
a fully interactive image 
generated by Javascript 
running in real browser! 



•  Because	users	are	stupid?	

Why does phishing work?	



Why does phishing work?	

•  User mental model vs. reality 
–  Browser security model too hard to understand! 

•  The easy path is insecure; the secure path takes 
extra effort 

•  Risks are rare 

•  Users tend not to suspect malice; they find benign 
interpretations and have been acclimated to failure 



Ques%ons?	



Cryptography: 
 

Secure communication over 
insecure paths 

(and/or: 
Secure data storage on 

insecure servers) 



Three main goals 

•  Confidentiality: preventing adversaries 
from reading our private data 
– Data = message or document  

•  Integrity: preventing attackers from 
altering our data 
– Data itself might or might not be private 

•  Authentication: determining who 
created a given message or document 
– Generally implies/requires integrity 



Special guests 

•  Alice                (sender of messages)  

•  Bob                  (receiver of messges) 
 
•  The attackers 

– Eve: “eavesdropper” 
– Mallory: “manipulator” 

Eve 



Confidentiality 



Mi: ith message 
of plaintext 

Alice Bob 

Eve 

E(Mi,	K)	
Ci: ith message 
of ciphertext D(Ci,	K)	

K K 

Ci 

Mi 

Mi? 

E(Mi, K) and D(Ci, K) are 
inverses for the same K 

“Symmetric key encryption” 



The Ideal Contest 

•  Attacker’s goal: any knowledge of Mi beyond an 
upper bound on its length 
–  Slightly better than 50% probability at guessing a single 

bit: attacker wins! 
–  Any notion of how Mi relates to Mj: attacker wins! 

•  Defender’s goal: ensure attacker has no reason to 
think any M' ∈ {0,1}n is more likely than any other 
–  (for Mi of length n) 



Eve’s Capabilities/Foreknowledge 

•  No knowledge of K 
–  We assume K is selected by a truly random process 
–  For b-bit key, any K ∈ {0,1}b is equally likely 

•  Recognition of success: Eve can generally tell if 
she has correctly and fully recovered Mi 
–  But: Eve cannot recognize anything about partial 

solutions, such as whether she has correctly identified a 
particular bit in Mi 

–  Does not apply to scenarios where Eve exhaustively 
examines every possible Mi' ∈ {0,1}n  



Eve’s Available Information 

1.  Ciphertext-only attack: 
–  Eve gets to see every instance of Ci 

–  Variant: Eve may also have partial information about Mi 
•  “It’s probably English text” 
•  Bob is Alice’s stockbroker, so it’s either “Buy!” or “Sell” 

2.  Known plaintext: 
–  Eve knows part of Mi and/or entire other Mj’s 
–  How could this happen? 

•  E.g. encrypted HTTP request: starts with “GET”  
•  E.g. Eve sees earlier message she knows Alice will send to Bob 
•  E.g. Alice transmits in the clear and then resends encrypted 



Eve’s Available Information, con’t 

3.  Chosen plaintext 
–  Eve gets Alice to send Mj’s of Eve’s choosing 
–  Example: Eve sends Alice an email spoofed from Alice’s 

boss saying “Please securely forward this to Bob” 
4.  Chosen ciphertext: 

–  Eve tricks Bob into decrypting some Cj' of her choice 
and he reveals something about the result 

–  How could this happen? 
•  E.g. repeatedly send ciphertext to a web server that will send 

back different-sized messages depending on whether ciphertext 
decrypts into something well-formatted 

–  Or: measure how long it takes Bob to decrypt & validate 



Eve’s Available Information, con’t 

5.  Combinations of the above 

•  Ideally, we’d like to defend against this last, the 
most powerful attacker 

•  And: we can!, so we’ll mainly focus on this attacker 
when discussing different considerations 



Designing Ciphers 

•  Clearly, the whole trick is in the design of E(M,K) 
and D(C,K) 

•  One very simple approach: 
 E(M,K) = ROTK(M); D(C,K) = ROT-K(C) 

i.e., take each letter in M and “rotate” it K positions 
(with wrap-around) through the alphabet 

•  E.g., Mi = “DOG”, K = 3 
  Ci = E(Mi,K) = ROT3(“DOG”) = “GRJ” 
  D(Ci,K) = ROT-3(“GRJ”) = “DOG” 

•  “Caesar cipher” 



Attacks on Caesar Ciphers? 
•  Brute force: try every possible value of K 

–  Work involved? 
–  At most 26 “steps” 
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– Analyze letter frequencies (“ETAOIN SHRDLU”) 
– Known plaintext / guess possible words & 

confirm 
•  E.g. “JCKN ECGUCT” =?  
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Attacks on Caesar Ciphers? 
•  Brute force: try every possible value of K 

–  Work involved? 
–  At most 26 “steps” 

•  Deduction: 
– Analyze letter frequencies (“ETAOIN SHRDLU”) 
– Known plaintext / guess possible words & 

confirm 
•  E.g. “JCKN ECGUCT” =? “HAIL CAESAR” ⇒ K=2 

– Chosen plaintext 
•  E.g. get a general to send “ALL QUIET”, 

observe “YJJ OSGCR” ⇒ K=24 



5 Minute Break 

 
Questions Before We Proceed? 



Kerckhoffs’ Principle 

•  Cryptosystems should remain secure even 
when attacker knows all internal details 
– Don’t rely on security-by-obscurity 

•  Key should be only thing that must stay 
secret 

•  It should be easy to change keys 



Better Versions of Rot-K ? 
•  Consider E(M,K) = Rot-{K1, K2, …, Kn}(M) 

–  i.e., rotate first character by K1, second character by K2, 
up through nth character.  Then start over with K1, ... 

–  K = { K1, K2, ..., Kn } 

•  How well do previous attacks work now? 
–  Brute force: key space is factor of 26(n-1) larger 

•  E.g., n = 7 ⇒ 300 million times as much work 

–  Letter frequencies: need more ciphertext to reason about 
–  Known/chosen plaintext: works just fine 

•  Can go further with “chaining”, e.g., 2nd rotation 
depends on K2 and first character of ciphertext 
– We just described 2,000 years of cryptography 



One-Time Pad 

•  Idea #1: use a different key for each message M 
– Different = completely independent 
– So: known plaintext, chosen plaintext, etc., don’t 

help attacker 

•  Idea #2: make the key as long as M 

•  E(M,K) = M ⊕ K   (⊕ = XOR) 
 

⊕ 0 1 
0 0 1 
1 1 0 

X ⊕ 0 = X     ‘ 
X ⊕ X = 0      ‘ 
X ⊕ Y = Y ⊕ X 

X ⊕ (Y ⊕ Z) = (X ⊕ Y) ⊕ Z 



One-Time Pad 

•  Idea #1: use a different key for each message M 
– Different = completely independent 
– So: known plaintext, chosen plaintext, etc., don’t 

help attacker 

•  Idea #2: make the key as long as M 

•  E(M,K) = M ⊕ K   (⊕ = XOR) 
D(C,K) = C ⊕ K 
  = M ⊕ K ⊕ K =  M ⊕ 0 =  M 

⊕ 0 1 
0 0 1 
1 1 0 

X ⊕ 0 = X     ‘ 
X ⊕ X = 0      ‘ 
X ⊕ Y = Y ⊕ X 

X ⊕ (Y ⊕ Z) = (X ⊕ Y) ⊕ Z 



One-Time Pad: Provably Secure! 

•  Let’s assume Eve has partial information about M 
•  We want to show: from C, she does not gain any 

further information 
•  Formalization: supposed Alice sends either M' or M'' 

–  Eve doesn’t know which; tries to guess based on C 

•  Proof: 
–  For random, independent K, all possible bit-patterns for C 

are equally likely 
–  This holds regardless of whether Alice chose M' or M'' 
–  Thus, observing a given C does not help Eve narrow 

down the possibilities in any way 



One-Time Pad: Provably Impractical! 

•  Problem #1: key generation 
–  Need truly random, independent keys 

•  Problem #2: key distribution 
–  Need to share keys as long as all 

possible communication 

–  If we have a secure way to establish 
such keys, just use that for  
communication in the first place! 



Two-Time Pad? 

•  What if we reuse a key K jeeeest once? 
•  Alice sends C = E(M, K) and C' = E(M', K) 
•  Eve observes M ⊕ K and M' ⊕ K 

– Can she learn anything about M and/or M' ? 
•  Eve computes C ⊕ C' = (M ⊕ K) ⊕ (M' ⊕ K) 

  



Two-Time Pad? 

•  What if we reuse a key K jeeeest once? 
•  Alice sends C = E(M, K) and C' = E(M', K) 
•  Eve observes M ⊕ K and M' ⊕ K 

– Can she learn anything about M and/or M' ? 
•  Eve computes C ⊕ C' = (M ⊕ K) ⊕ (M' ⊕ K) 

 = (M ⊕ M') ⊕ (K ⊕ K) 
 = (M ⊕ M') ⊕ 0 
 = M ⊕ M' 

•  Now she knows which bits in M match bits in M' 
•  And if Eve already knew M, now she knows M' ! 



Modern Symmetric-Key Encryption: 

Block Ciphers 



Block cipher 

A function E : {0, 1}b ×{0, 1}k → {0, 1}b. Once we fix the 
key K (of size k bits), we get:  
EK : {0,1}b → {0,1}b   denoted by EK(M) = E(M,K). 

 (and also D(C,K), E(M,K)’s inverse) 
•  Three properties: 

–  Correctness: 
•  EK(M) is a permutation (bijective function) on b-bit strings 
•  Bijective ⇒ invertible 

–  Efficiency: computable in 𝜇sec’s sec’s 
–  Security: 

•  For unknown K, “behaves” like a random permutation 

•  Provides a building block for more extensive encryption 


