
Symmetric-Key Cryptography

CS 161: Computer Security
Prof. Vern Paxson

TAs: Paul Bramsen, Apoorva Dornadula,

David Fifield, Mia Gil Epner, David Hahn, Warren He,
Grant Ho, Frank Li, Nathan Malkin, Mitar Milutinovic,

Rishabh Poddar, Rebecca Portnoff, Nate Wang

http://inst.eecs.berkeley.edu/~cs161/
February 21, 2017

Demo: Phishing via
Browser Tab Manipulation

Sneakiness

The Problem of Phishing

•  Arises due to mismatch between reality & user’s:
–  Perception of how to assess legitimacy
–  Mental model of what attackers can control

•  Both Email and Web

•  Coupled with:
–  Deficiencies in how web sites authenticate

•  In particular, “replayable” authentication that is vulnerable to
theft

•  Attackers have many angles …

1.  Text and left-side pixels fully under attacker control
2.  Domain name cannot be altered (but can be misleading!)
3.  Path after the domain name fully under attacker control
4.  All pixels fully under attacker control

Homograph Attacks	

•  International domain names can use international
character set
–  E.g., Chinese contains characters that look like / . ? =

•  Attack: Legitimately register var.cn …
•  … buy legitimate set of HTTPS certificates for it …
•  … and then create a subdomain:

 www.pnc.com⁄webapp⁄unsec⁄homepage.var.cn

This is one subdomain

Check for a padlock?	

Check for “green glow” in address bar?

Check for Everything?

“Browser in Browser”

Apparent browser is just
a fully interactive image
generated by Javascript
running in real browser!

•  Because	users	are	stupid?	

Why does phishing work?	

Why does phishing work?	

•  User mental model vs. reality
–  Browser security model too hard to understand!

•  The easy path is insecure; the secure path takes
extra effort

•  Risks are rare

•  Users tend not to suspect malice; they find benign
interpretations and have been acclimated to failure

Ques%ons?	

Cryptography:

Secure communication over
insecure paths

(and/or:
Secure data storage on

insecure servers)

Three main goals

•  Confidentiality: preventing adversaries
from reading our private data
– Data = message or document

•  Integrity: preventing attackers from
altering our data
– Data itself might or might not be private

•  Authentication: determining who
created a given message or document
– Generally implies/requires integrity

Special guests

•  Alice (sender of messages)

•  Bob (receiver of messges)

•  The attackers

– Eve: “eavesdropper”
– Mallory: “manipulator”

Eve

Confidentiality

Mi: ith message
of plaintext

Alice Bob

Eve

E(Mi,	K)	
Ci: ith message
of ciphertext D(Ci,	K)	

K K

Ci

Mi

Mi?

E(Mi, K) and D(Ci, K) are
inverses for the same K

“Symmetric key encryption”

The Ideal Contest

•  Attacker’s goal: any knowledge of Mi beyond an
upper bound on its length
–  Slightly better than 50% probability at guessing a single

bit: attacker wins!
–  Any notion of how Mi relates to Mj: attacker wins!

•  Defender’s goal: ensure attacker has no reason to
think any M' ∈ {0,1}n is more likely than any other
–  (for Mi of length n)

Eve’s Capabilities/Foreknowledge

•  No knowledge of K
–  We assume K is selected by a truly random process
–  For b-bit key, any K ∈ {0,1}b is equally likely

•  Recognition of success: Eve can generally tell if
she has correctly and fully recovered Mi
–  But: Eve cannot recognize anything about partial

solutions, such as whether she has correctly identified a
particular bit in Mi

–  Does not apply to scenarios where Eve exhaustively
examines every possible Mi' ∈ {0,1}n

Eve’s Available Information

1.  Ciphertext-only attack:
–  Eve gets to see every instance of Ci

–  Variant: Eve may also have partial information about Mi
•  “It’s probably English text”
•  Bob is Alice’s stockbroker, so it’s either “Buy!” or “Sell”

2.  Known plaintext:
–  Eve knows part of Mi and/or entire other Mj’s
–  How could this happen?

•  E.g. encrypted HTTP request: starts with “GET”
•  E.g. Eve sees earlier message she knows Alice will send to Bob
•  E.g. Alice transmits in the clear and then resends encrypted

Eve’s Available Information, con’t

3.  Chosen plaintext
–  Eve gets Alice to send Mj’s of Eve’s choosing
–  Example: Eve sends Alice an email spoofed from Alice’s

boss saying “Please securely forward this to Bob”
4.  Chosen ciphertext:

–  Eve tricks Bob into decrypting some Cj' of her choice
and he reveals something about the result

–  How could this happen?
•  E.g. repeatedly send ciphertext to a web server that will send

back different-sized messages depending on whether ciphertext
decrypts into something well-formatted

–  Or: measure how long it takes Bob to decrypt & validate

Eve’s Available Information, con’t

5.  Combinations of the above

•  Ideally, we’d like to defend against this last, the
most powerful attacker

•  And: we can!, so we’ll mainly focus on this attacker
when discussing different considerations

Designing Ciphers

•  Clearly, the whole trick is in the design of E(M,K)
and D(C,K)

•  One very simple approach:
 E(M,K) = ROTK(M); D(C,K) = ROT-K(C)

i.e., take each letter in M and “rotate” it K positions
(with wrap-around) through the alphabet

•  E.g., Mi = “DOG”, K = 3
 Ci = E(Mi,K) = ROT3(“DOG”) = “GRJ”
 D(Ci,K) = ROT-3(“GRJ”) = “DOG”

•  “Caesar cipher”

Attacks on Caesar Ciphers?
•  Brute force: try every possible value of K

–  Work involved?
–  At most 26 “steps”

Attacks on Caesar Ciphers?
•  Brute force: try every possible value of K

–  Work involved?
–  At most 26 “steps”

•  Deduction:
– Analyze letter frequencies (“ETAOIN SHRDLU”)
– Known plaintext / guess possible words &

confirm
•  E.g. “JCKN ECGUCT” =?

Attacks on Caesar Ciphers?
•  Brute force: try every possible value of K

–  Work involved?
–  At most 26 “steps”

•  Deduction:
– Analyze letter frequencies (“ETAOIN SHRDLU”)
– Known plaintext / guess possible words &

confirm
•  E.g. “JCKN ECGUCT” =? “HAIL CAESAR”

Attacks on Caesar Ciphers?
•  Brute force: try every possible value of K

–  Work involved?
–  At most 26 “steps”

•  Deduction:
– Analyze letter frequencies (“ETAOIN SHRDLU”)
– Known plaintext / guess possible words &

confirm
•  E.g. “JCKN ECGUCT” =? “HAIL CAESAR” ⇒ K=2

– Chosen plaintext
•  E.g. get a general to send “ALL QUIET”,

observe “YJJ OSGCR” ⇒ K=24

5 Minute Break

Questions Before We Proceed?

Kerckhoffs’ Principle

•  Cryptosystems should remain secure even
when attacker knows all internal details
– Don’t rely on security-by-obscurity

•  Key should be only thing that must stay
secret

•  It should be easy to change keys

Better Versions of Rot-K ?
•  Consider E(M,K) = Rot-{K1, K2, …, Kn}(M)

–  i.e., rotate first character by K1, second character by K2,
up through nth character. Then start over with K1, ...

–  K = { K1, K2, ..., Kn }

•  How well do previous attacks work now?
–  Brute force: key space is factor of 26(n-1) larger

•  E.g., n = 7 ⇒ 300 million times as much work

–  Letter frequencies: need more ciphertext to reason about
–  Known/chosen plaintext: works just fine

•  Can go further with “chaining”, e.g., 2nd rotation
depends on K2 and first character of ciphertext
– We just described 2,000 years of cryptography

One-Time Pad

•  Idea #1: use a different key for each message M
– Different = completely independent
– So: known plaintext, chosen plaintext, etc., don’t

help attacker

•  Idea #2: make the key as long as M

•  E(M,K) = M ⊕ K (⊕ = XOR)

⊕ 0 1
0 0 1
1 1 0

X ⊕ 0 = X ‘
X ⊕ X = 0 ‘
X ⊕ Y = Y ⊕ X

X ⊕ (Y ⊕ Z) = (X ⊕ Y) ⊕ Z

One-Time Pad

•  Idea #1: use a different key for each message M
– Different = completely independent
– So: known plaintext, chosen plaintext, etc., don’t

help attacker

•  Idea #2: make the key as long as M

•  E(M,K) = M ⊕ K (⊕ = XOR)
D(C,K) = C ⊕ K
 = M ⊕ K ⊕ K = M ⊕ 0 = M

⊕ 0 1
0 0 1
1 1 0

X ⊕ 0 = X ‘
X ⊕ X = 0 ‘
X ⊕ Y = Y ⊕ X

X ⊕ (Y ⊕ Z) = (X ⊕ Y) ⊕ Z

One-Time Pad: Provably Secure!

•  Let’s assume Eve has partial information about M
•  We want to show: from C, she does not gain any

further information
•  Formalization: supposed Alice sends either M' or M''

–  Eve doesn’t know which; tries to guess based on C

•  Proof:
–  For random, independent K, all possible bit-patterns for C

are equally likely
–  This holds regardless of whether Alice chose M' or M''
–  Thus, observing a given C does not help Eve narrow

down the possibilities in any way

One-Time Pad: Provably Impractical!

•  Problem #1: key generation
–  Need truly random, independent keys

•  Problem #2: key distribution
–  Need to share keys as long as all

possible communication

–  If we have a secure way to establish
such keys, just use that for
communication in the first place!

Two-Time Pad?

•  What if we reuse a key K jeeeest once?
•  Alice sends C = E(M, K) and C' = E(M', K)
•  Eve observes M ⊕ K and M' ⊕ K

– Can she learn anything about M and/or M' ?
•  Eve computes C ⊕ C' = (M ⊕ K) ⊕ (M' ⊕ K)

Two-Time Pad?

•  What if we reuse a key K jeeeest once?
•  Alice sends C = E(M, K) and C' = E(M', K)
•  Eve observes M ⊕ K and M' ⊕ K

– Can she learn anything about M and/or M' ?
•  Eve computes C ⊕ C' = (M ⊕ K) ⊕ (M' ⊕ K)

 = (M ⊕ M') ⊕ (K ⊕ K)
 = (M ⊕ M') ⊕ 0
 = M ⊕ M'

•  Now she knows which bits in M match bits in M'
•  And if Eve already knew M, now she knows M' !

Modern Symmetric-Key Encryption:

Block Ciphers

Block cipher

A function E : {0, 1}b ×{0, 1}k → {0, 1}b. Once we fix the
key K (of size k bits), we get:
EK : {0,1}b → {0,1}b denoted by EK(M) = E(M,K).

 (and also D(C,K), E(M,K)’s inverse)
•  Three properties:

–  Correctness:
•  EK(M) is a permutation (bijective function) on b-bit strings
•  Bijective ⇒ invertible

–  Efficiency: computable in 𝜇sec’s sec’s
–  Security:

•  For unknown K, “behaves” like a random permutation

•  Provides a building block for more extensive encryption

