
Securing Internet
Communication: TLS & DNSSEC

CS 161: Computer Security
Prof. Vern Paxson

TAs: Paul Bramsen, Apoorva Dornadula,

David Fifield, Mia Gil Epner, David Hahn, Warren He,
Grant Ho, Frank Li, Nathan Malkin, Mitar Milutinovic,

Rishabh Poddar, Rebecca Portnoff, Nate Wang

https://inst.eecs.berkeley.edu/~cs161/
April 11, 2017

TLS Protocol Diagram: Q’s?

SYN

SYN ACK

ACK

Browser Amazon
Server

Hello. My rnd # = R
B. I support

(TLS+RSA+AES128+SHA256) or

(SSL+DH+3DES+MD5) or …

My rnd # = RS. Let's use

TLS+RSA+AES128+SHA256

Here's my cert

~2-3 K
B of d

ata

Browser

Here's my cert

~2-3 K
B of d

ata

{PS}KAmazon

PS

PS

{M1, MAC(M1,IB)}CB

{M2, MAC(M2,IS)}CS

MAC(dialog,IS)

MAC(dialog,IB)

Amazon
Server

SSL / TLS Limitations
•  Properly used, SSL / TLS provides powerful end-to-

end protections
•  So why not use it for everything??
•  Issues:

–  Cost of public-key crypto
•  Takes non-trivial CPU processing (but today a minor issue)
•  Note: symmetric key crypto on modern hardware is non-issue

–  Hassle of buying/maintaining certs (fairly minor)
–  DoS amplification

•  Client can force server to undertake public key operations
•  But: requires established TCP connection, and given that, there

are often other juicy targets like back-end databases
–  Integrating with other sites that don’t use HTTPS
–  Latency: extra round trips ⇒ pages take longer to load

SSL / TLS Limitations, con’t
•  Problems that SSL / TLS does not take care of ?
•  TCP-level denial of service (or any other DoS)

–  SYN flooding
–  RST injection

•  (but does protect against data injection!)

•  SQL injection / XSS / server-side coding/logic flaws
•  Browser coding/logic flaws
•  User flaws

–  Weak passwords
–  Phishing

•  Vulnerabilities introduced by HTTP compatibility …

GET / HTTP/1.1
Host: www.amazon.com
Cookie: ...

HTTP/1.1 301 Moved Permanently
Location: https://www.amazon.com/

GET / HTTP/1.1
Host: www.amazon.com
Cookie: ...

HTTP/1.1 301 Moved Permanently
Location: https://www.amazon.com/

GET / HTTP/1.1
Host: www.amazon.com
Cookie: ...

HTTP/1.1 301 Moved Permanently
Location: https://www.amazon.com/

This	is	sent	unprotected,	using	HTTP	rather	than	HTTPS.			

A	MITM	a5acker	can	connect	to	Amazon	using	HTTPS,	
but	relay	the	content	to	user	using	HTTP,	altering	
whatever	they	wish.	

A5acker	rewrites	any	embedded	https:	URLs	to	HTTP	
(“sslstrip	a5ack”).	

HTTP Strict Transport Security
•  To defend against sslstrip attacks, a web server

can return (during HTTPS conn.) directive such as:
 Strict-Transport-Security:	max-age=31536000	
includeSubDomains	

•  Directs browser to:
–  Only connect to that site using HTTPS (expires in 1yr)
–  Promote any HTTP links in pages to HTTPS
–  Don’t allow connections w/ cert errors to proceed

•  Similar to TOFU, requires safe initial connection
–  Otherwise, MITM attacker could strip out the header

•  Many browsers today use a predefined list of HSTS
sites – see https://hstspreload.org/	

SSL / TLS Limitations, con’t
•  Problems that SSL / TLS does not take care of ?
•  TCP-level denial of service

–  SYN flooding
–  RST injection

•  (but does protect against data injection!)

•  SQL injection / XSS / server-side coding/logic flaws
•  Browser coding/logic flaws
•  User flaws

–  Weak passwords
–  Phishing

•  Vulnerabilities introduced by HTTP compatibility …

•  Issues of trust …

TLS/SSL Trust Issues
•  “Commercial certificate authorities protect you from

anyone from whom they are unwilling to take money”
–  Matt Blaze, circa 2001

•  So how many CAs do we have to worry about,
anyway?

TLS/SSL Trust Issues
•  “Commercial certificate authorities protect you from

anyone from whom they are unwilling to take money”
–  Matt Blaze, circa 2001

•  So how many CAs do we have to worry about,
anyway?

•  Of course, it’s not just their greed that matters …

This appears to be a
fully valid cert using
normal browser
validation rules.

Only detected by
Chrome due to its
recent introduction of
cert “pinning” -
requiring that certs
for certain domains
must be signed by
specific CAs rather
than any generally
trusted CA.

TLS/SSL Trust Issues
•  “Commercial certificate authorities protect you from

anyone from whom they are unwilling to take money”
–  Matt Blaze, circa 2001

•  So how many CAs do we have to worry about,
anyway?

•  Of course, it’s not just their greed that matters …
•  … and it’s not just their diligence & security that

matters …
–  “A decade ago, I observed that commercial certificate

authorities protect you from anyone from whom they are
unwilling to take money. That turns out to be wrong; they
don’t even do that much.” - Matt Blaze, circa 2010

Note: the cert is “forged” in the sense that it
doesn’t really belong to Gmail, PayPal, or
whomever. But it does not appear forged because
it includes a legitimate signature from a trusted CA.

(Cert pinning will prevent this interception.)

TLS/SSL Trust Issues
•  “Commercial certificate authorities protect you from anyone

from whom they are unwilling to take money”
–  Matt Blaze, circa 2001

•  So how many CAs do we have to worry about,
anyway?

•  Of course, it's not just their greed that matters …
•  … and it's not just their diligence & security that

matters …
–  “A decade ago, I observed that commercial certificate authorities

protect you from anyone from whom they are unwilling to take
money. That turns out to be wrong; they don't even do that much.” -
Matt Blaze, circa 2010

•  You also have to trust the developers of libraries …
–  Both for clients when validating certs …

This is the code that verifies that the
Diffie-Hellman parameters sent by
the server have a valid signature per
the public key in the server’s cert

This part computes the hash
over the D-H parameters to then
compare against the signature

Do you spot the bug?

This code
always executes!

When it does, err = 0, so the
function returns success …

When it does, err = 0, so the
function returns success …
without actually checking the
signature!

No demonstration that
server possesses private
key ⟹ trivial MITM

TLS/SSL Trust Issues
•  “Commercial certificate authorities protect you from anyone

from whom they are unwilling to take money”
–  Matt Blaze, circa 2001

•  So how many CAs do we have to worry about,
anyway?

•  Of course, it's not just their greed that matters …
•  … and it's not just their diligence & security that

matters …
–  “A decade ago, I observed that commercial certificate

authorities protect you from anyone from whom they are
unwilling to take money. That turns out to be wrong; they
don't even do that much.” - Matt Blaze, circa 2010

•  You also have to trust the developers of libraries …
–  Both for clients when validating certs …
–  and servers when generating certs

So only 32,768 possible private keys could be generated
– and attackers could just enumerate them

Survey found bug affected ~1.5% of HTTPS web server certs

5 Minute Break

Questions Before We Proceed?

Securing DNS Lookups

•  How can we ensure when clients look up names
with DNS, they can trust answers they receive?

•  Idea #1: do DNS lookups over TLS
–  (assuming either we run DNS over TCP, or we use

“Datagram TLS”)

requesting host
xyz.poly.edu gaia.cs.umass.edu

root DNS server ('.')

local DNS server
(resolver)

128.238.1.68

1

2
3

4
5

6
authoritative DNS server

('umass.edu', 'cs.umass.edu')
dns.cs.umass.edu

7 8

TLD DNS server ('.edu')

Securing DNS using SSL / TLS?

Host at xyz.poly.edu
wants IP address for
gaia.cs.umass.edu

Idea: connections
{1,8}, {2,3}, {4,5}
and {6,7} all run
over SSL / TLS

Securing DNS Lookups
•  How can we ensure when clients look up names

with DNS, they can trust answers they receive?
•  Idea #1: do DNS lookups over TLS

–  (assuming either we run DNS over TCP, or we use
“Datagram TLS”)

–  Issues?
•  Performance: DNS is very lightweight. TLS is not.
•  Caching: crucial for DNS scaling. But then how do we keep

authentication assurances?
–  Object security vs. Channel security

Securing DNS Lookups
•  How can we ensure when clients look up names

with DNS, they can trust answers they receive?
•  Idea #1: do DNS lookups over TLS

–  (assuming either we run DNS over TCP, or we use
“Datagram TLS”)

–  Issues?
•  Performance: DNS is very lightweight. TLS is not.
•  Caching: crucial for DNS scaling. But then how do we keep

authentication assurances?
–  Object security vs. Channel security

•  Idea #2: make DNS results like certs
–  I.e., a verifiable signature that guarantees who

generated a piece of data; signing happens off-line

 Operation of DNSSEC
•  DNSSEC = standardized DNS security

extensions currently being deployed
•  As a resolver works its way from DNS root down

to final name server for a name, at each level it
gets a signed statement regarding the key(s)
used by the next level

•  This builds up a chain of trusted keys
•  Resolver has root’s key wired into it

•  The final answer that the resolver receives is
signed by that level’s key

•  Resolver can trust it’s the right key because of chain of
support from higher levels

•  All keys as well as signed results are cacheable

www.google.com A?
Client’s
Resolver k.root-servers.net

Ordinary DNS:

www.google.com A?
Client’s
Resolver k.root-servers.net

Ordinary DNS:

We start off by sending the query to one of the root name
servers. These range from a.root-servers.net
through m.root-servers.net. Here we just picked one.

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

The reply didn’t include an answer for www.google.com.
That means that k.root-servers.net is instead telling
us where to ask next, namely one of the name servers
for .com specified in an NS record.

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

This Resource Record (RR) tells us that one of the name
servers for .com is the host a.gtld-servers.net.
(GTLD = Global Top Level Domain.)

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

(The line above shows com. rather than .com because
technically that’s the actual name, and that’s what the Unix
dig utility shows; but the convention is to call it “dot-com”)

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

This RR tells us that an Internet address (“A” record)
for a.gtld-servers.net is 192.5.6.30. That
allows us to know where to send our next query.

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

The actual response includes a bunch of
NS and A records for additional .com name
servers, which we omit here for simplicity.

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

www.google.com A?
Client’s
Resolver a.gtld-servers.net

We send the same query to one of the .com
name servers we’ve been told about

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

www.google.com A?

google.com. NS ns1.google.com
ns1.google.com A 216.239.32.10
…

Client’s
Resolver a.gtld-servers.net

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

www.google.com A?

google.com. NS ns1.google.com
ns1.google.com A 216.239.32.10
…

Client’s
Resolver a.gtld-servers.net

That server again doesn’t have a direct
answer for us, but tells us about a number
of google.com name servers we can try

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

www.google.com A?

google.com. NS ns1.google.com
ns1.google.com A 216.239.32.10
…

Client’s
Resolver a.gtld-servers.net

www.google.com A?

www.google.com. A 74.125.24.14
…

Client’s
Resolver ns1.google.com

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

www.google.com A?

google.com. NS ns1.google.com
ns1.google.com A 216.239.32.10
…

Client's
Resolver a.gtld-servers.net

www.google.com A?

www.google.com. A 74.125.24.14
…

Client’s
Resolver ns1.google.com

Trying one of the google.com name servers then gets us
an answer to our query, and we’re good-to-go …
… though with no confidence that an attacker hasn’t led
us astray with a bogus reply somewhere along the way :-(

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30
…
com. DS hash-of-com’s-key
com. RRSIG DS signature-of-that-
 DS-record-using-root’s-key

Client’s
Resolver k.root-servers.net

DNSSEC (with simplifications):

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30
…
com. DS hash-of-com’s-key
com. RRSIG DS signature-of-that-
 DS-record-using-root’s-key

Client’s
Resolver k.root-servers.net

DNSSEC (with simplifications):

Up through here is the same as before …

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30
…
com. DS hash-of-com’s-key
com. RRSIG DS signature-of-that-
 DS-record-using-root’s-key

Client’s
Resolver k.root-servers.net

DNSSEC (with simplifications):

This new RR (“Delegation Signer”) lets us tell if we have a
correct copy of .com’s public key (by comparing hash values)

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30
…
com. DS hash-of-com’s-key
com. RRSIG DS signature-of-that-
 DS-record-using-root's-key

Client’s
Resolver k.root-servers.net

DNSSEC (with simplifications):

The actual process of retrieving .com’s public key is
complicated (involves multiple keys) so we’ll defer it for a bit …

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30
…
com. DS hash-of-com’s-key
com. RRSIG DS signature-of-that-
 DS-record-using-root’s-key

Client’s
Resolver k.root-servers.net

DNSSEC (with simplifications):

This new RR specifies a signature over another RR
… in this case, the signature covers the above DS
record, and is made using the root’s private key

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30
…
com. DS hash-of-com’s-key
com. RRSIG DS signature-of-that-
 DS-record-using-root’s-key

Client’s
Resolver k.root-servers.net

DNSSEC (with simplifications):

The resolver has the root’s public key
hardwired into it. The client only proceeds
with DNSSEC if it can validate the signature.

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30
…
com. DS hash-of-com’s-key
com. RRSIG DS signature-of-that-
 DS-record-using-root’s-key

Client’s
Resolver k.root-servers.net

DNSSEC (with simplifications):

Note: there’s no signature over the NS or A information! If an
attacker has fiddled with those, the resolver will ultimately find
it has a record for which it can’t verify the signature.

www.google.com A?
Client’s
Resolver a.gtld-servers.net

DNSSEC (with simplifications):

The resolver again proceeds to trying one of
the name servers it’s learned about.

Nothing guarantees this is a legitimate name
server for the query!

www.google.com A?

google.com. NS ns1.google.com
ns1.google.com. A 216.239.32.10
…
google.com. DS hash-of-
 google.com’s-key
google.com. RRSIG DS signature-
 of-that-DS-record-using-com’s-key

Client’s
Resolver a.gtld-servers.net

DNSSEC (with simplifications):

www.google.com A?

google.com. NS ns1.google.com
ns1.google.com. A 216.239.32.10
…
google.com. DS hash-of-
 google.com's-key
google.com. RRSIG DS signature-
 of-that-DS-record-using-com's-key

Client’s
Resolver a.gtld-servers.net

DNSSEC (with simplifications):

Back comes similar information as before: a way to securely
identify google.com’s public key, signed by .com’s key (which
the resolver trusts because the root signed information about it)

www.google.com A?
Client’s
Resolver ns1.google.com

DNSSEC (with simplifications):

The resolver contacts one of the google.com
name servers it’s learned about.

Again, nothing guarantees this is a legitimate
name server for the query!

www.google.com A?

www.google.com. A 74.125.24.14
…
www.google.com. RRSIG A
 signature-of-the-A-records-using-
 google.com's-key

Client’s
Resolver ns1.google.com

DNSSEC (with simplifications):

www.google.com A?

www.google.com. A 74.125.24.14
…
www.google.com. RRSIG A
 signature-of-the-A-records-using-
 google.com's-key

Client’s
Resolver ns1.google.com

DNSSEC (with simplifications):

Finally we’ve received the information we
wanted (A records for www.google.com)! …
and we receive a signature over those records

www.google.com A?

www.google.com. A 74.125.24.14
…
www.google.com. RRSIG A
 signature-of-the-A-records-using-
 google.com's-key

Client’s
Resolver ns1.google.com

DNSSEC (with simplifications):

Assuming the signature validates, then because we believe
(due to the signature chain) it’s indeed from google.com’s
key, we can trust that this is a correct set of A records …
Regardless of what name server returned them to us!

www.google.com A?

 www.google.com. A 6.6.6.6
Client’s
Resolver ns1.evil.com

DNSSEC - Mallory attacks!

www.google.com A?

 www.google.com. A 6.6.6.6
Client’s
Resolver ns1.evil.com

DNSSEC - Mallory attacks!

Resolver observes that the reply didn’t
include a signature, rejects it as insecure

www.google.com A?

www.google.com. A 6.6.6.6
www.google.com RRSIG A
 signature-of-the-A-record-using-
 evil.com’s-key

Client’s
Resolver ns1.evil.com

DNSSEC - Mallory attacks!

www.google.com A?

www.google.com. A 6.6.6.6
www.google.com RRSIG A
 signature-of-the-A-record-using-
 evil.com's-key

Client’s
Resolver ns1.evil.com

DNSSEC - Mallory attacks!

(1) If resolver didn’t receive a signature
from .com for evil.com’s key, then it
can’t validate this signature & ignores
reply since it’s not properly signed …

www.google.com A?

www.google.com. A 6.6.6.6
www.google.com RRSIG A
 signature-of-the-A-record-using-
 evil.com's-key

Client’s
Resolver ns1.evil.com

DNSSEC - Mallory attacks!

(2) If resolver did receive a signature from .com
for evil.com’s key, then it knows the key is for
evil.com and not google.com … and ignores it

www.google.com A?

www.google.com. A 6.6.6.6
www.google.com RRSIG A
 signature-of-the-A-record-using-
 google.com’s-key

Client’s
Resolver ns1.evil.com

DNSSEC - Mallory attacks!

www.google.com A?

www.google.com. A 6.6.6.6
www.google.com RRSIG A
 signature-of-the-A-record-using-
 google.com's-key

Client’s
Resolver ns1.evil.com

DNSSEC - Mallory attacks!

If signature actually comes from google.com’s key,
resolver will believe it …
… but no such signature should exist unless either:
(1) google.com intended to sign the RR, or
(2) google.com’s private key was compromised

. DNSKEY?
Client’s
Resolver k.root-servers.net

DNSSEC: Accessing keys

To build up the keys needed for validation, our client
contacts each name server in the DNS hierarchy
asking it for all of its associated keys.

Here we ask the root for its keys (one of which we
already know as our trust anchor).

. DNSKEY?
Client’s
Resolver k.root-servers.net

DNSSEC: Accessing keys

We can ask for any other keys we need, such as .com’s and
google.com’s, in parallel.

Very quickly we’ll have most of the keys we need in our cache.

. DNSKEY?

. DNSKEY cryptogoop for root’s
key-signing key (KSK)
. DNSKEY cryptogoop for root’s
zone-signing key (ZSK)
. DNSKEY cryptogoop for
possibly other keys
…
. RRSIG DNSKEY signature-of-
those-DNSKEY-records-using-
root’s-KSK

Client’s
Resolver k.root-servers.net

DNSSEC: Accessing keys

. DNSKEY?

. DNSKEY cryptogoop for root’s
key-signing key (KSK)
. DNSKEY cryptogoop for root’s
zone-signing key (ZSK)
. DNSKEY cryptogoop for
possibly other keys
…
. RRSIG DNSKEY signature-of-
those-DNSKEY-records-using-
root’s-KSK

Client’s
Resolver k.root-servers.net

DNSSEC: Accessing keys

Each DNSKEY is a public key plus a
description of the algorithms it’s
associated with (e.g., RSA+SHA256)

. DNSKEY?

. DNSKEY cryptogoop for root’s
key-signing key (KSK)
. DNSKEY cryptogoop for root’s
zone-signing key (ZSK)
. DNSKEY cryptogoop for
possibly other keys
…
. RRSIG DNSKEY signature-of-
those-DNSKEY-records-using-
root’s-KSK

Client’s
Resolver k.root-servers.net

DNSSEC: Accessing keys

The KSK is used to sign all of
the DNSKEY entries in the zone.

. DNSKEY?

. DNSKEY cryptogoop for root’s
key-signing key (KSK)
. DNSKEY cryptogoop for root’s
zone-signing key (ZSK)
. DNSKEY cryptogoop for
possibly other keys
…
. RRSIG DNSKEY signature-of-
those-DNSKEY-records-using-
root’s-KSK

Client’s
Resolver k.root-servers.net

DNSSEC: Accessing keys

The client has a hash of the root’s KSK
hardwired into its config as a trust anchor.

. DNSKEY?

. DNSKEY cryptogoop for root’s
key-signing key (KSK)
. DNSKEY cryptogoop for root’s
zone-signing key (ZSK)
. DNSKEY cryptogoop for
possibly other keys
…
. RRSIG DNSKEY signature-of-
those-DNSKEY-records-using-
root’s-KSK

Client’s
Resolver k.root-servers.net

DNSSEC: Accessing keys

For everything below the root (e.g., .com	and google.com)
we get a hash of the KSK via a DS record, as shown earlier,
so we can tell if we get the right KSK in a DNSKEY entry.

. DNSKEY?

. DNSKEY cryptogoop for root’s
key-signing key (KSK)
. DNSKEY cryptogoop for root’s
zone-signing key (ZSK)
. DNSKEY cryptogoop for
possibly other keys
…
. RRSIG DNSKEY signature-of-
those-DNSKEY-records-using-
root’s-KSK

Client’s
Resolver k.root-servers.net

DNSSEC: Accessing keys

The ZSK is used for signing all of the other RRSIG entries in the
zone, including DS records for subzones.
(E.g., .com signs its DS record for google.com using .com’s ZSK

. DNSKEY?

. DNSKEY cryptogoop for root’s
key-signing key (KSK)
. DNSKEY cryptogoop for root’s
zone-signing key (ZSK)
. DNSKEY cryptogoop for
possibly other keys
…
. RRSIG DNSKEY signature-of-
those-DNSKEY-records-using-
root’s-KSK

Client’s
Resolver k.root-servers.net

DNSSEC: Accessing keys

Having separate key-signing-keys vs. zone-signing-keys allows a
zone to change its ZSK without needing to get its parent to re-sign,
since parent only signs the KSK. Enables frequent key rollover.

Issues With DNSSEC ?

•  Issue #1: Replies are Big

69-byte	query:	“dig	+dnssec	berkeley.edu”	

3,419-byte	reply	

Issues With DNSSEC ?

•  Issue #1: Replies are Big
–  E.g., “dig	+dnssec	berkeley.edu” can return 3400+ B
–  DoS amplification
–  Increased latency on low-capacity links
–  Headaches w/ older libraries that assume replies < 512B

Issues With DNSSEC ?

•  Issue #1: Replies are Big
–  E.g., “dig	+dnssec	berkeley.edu” can return 3400+ B
–  DoS amplification
–  Increased latency on low-capacity links
–  Headaches w/ older libraries that assume replies < 512B

•  Issue #2: Partial deployment

–  What do you do with unsigned/unvalidated results?
–  If you trust them, weakens incentive to upgrade
–  If you don’t trust them, a whole lot of things break

Issues With DNSSEC, con’t
•  Issue #3: Management headaches

–  What happens if when updating your site’s keys you
make a mistake?

–  Suddenly your Entire Site Breaks
•  Issue #4: Negative results (“no such name”)

–  What statement does the nameserver sign?
–  If “gabluph.google.com” doesn’t exist, then have to do

dynamic key-signing (expensive) for any bogus request
•  DoS vulnerability

–  Instead, sign (off-line) statements about order of names
•  E.g., sign “gabby.google.com followed by gabrunk.google.com”
•  Thus, can see that gabluph.google.com can’t exist

–  But: now attacker can enumerate all names that exist :-(

Issues With DNSSEC, con’t

•  Issue #5: Who do you really trust?
–  For your laptop (say), who does all the “grunt work” of

fetching keys & validating DNSSEC signatures?

•  Convenient answer: your laptop's local resolver
– … which you acquire via DHCP in your local coffeeshop
–  I.e., exactly the most-feared potentially untrustworthy

part of the DNS resolution process!

•  Alternatives?
⇒  Your laptop needs to do all the validation work itself :-(

