Securing Internet
Communication: TLS & DNSSEC

CS 161: Computer Security

Prof. Vern Paxson

TAs: Paul Bramsen, Apoorva Dornadula,
David Fifield, Mia Gil Epner, David Hahn, Warren He,
Grant Ho, Frank Li, Nathan Malkin, Mitar Milutinovic,

Rishabh Poddar, Rebecca Portnoff, Nate Wang

https://inst.eecs.berkeley.edu/~cs161/

TLS Protocol Diagram: Q’s?

Amazon Amazon

Browser Browser
Server Server

SYN ACK ~2- 3
PS] {Ps;
' M .
Hay,, AC(Aoty | PS
(Trg,, " Wr, B)
(Ssy 7kI‘?SAand"%Iw?
D AE, : \3)

SSL / TLS Limitations

* Properly used, SSL / TLS provides powerful end-to-
end protections

* S0 why not use it for everything??

* |ssues:
— Cost of public-key crypto

« Takes non-trivial CPU processing (but today a minor issue)
* Note: symmetric key crypto on modern hardware is non-issue

— Hassle of buying/maintaining certs (fairly minor)
— DoS amplification

» Client can force server to undertake public key operations

» But: requires established TCP connection, and given that, there
are often other juicy targets like back-end databases

— Integrating with other sites that don’t use HTTPS
— Latency: extra round trips = pages take longer to load

SSL / TLS Limitations, con’t
Problems that SSL / TLS does not take care of ?

TCP-level denial of service (or any other DoS)
— SYN flooding
— RST injection

 (but does protect against data injection!)
SQL injection / XSS / server-side coding/logic flaws
Browser coding/logic flaws

User flaws
— Weak passwords

— Phishing
Vulnerabilities introduced by HTTP compatibility ...

&) www.amazon.com

& www.amazon.com

(]
B4
(m)]

[ON [@ https://www.amazon.com

et < A A A & amazon.com &

A A @ https://www.amazon.com

Listen with Prime

oUe LOVE
j’ {lle | ME NOT

AMAZON MUSIC ORIGINAL PLAYLISTS

@ ® | @ https://www.amazon.com < | th ()

b < [at A A & amazon.com & u]

A A @ nhttps://www.amazon.com

Listen with Prime

NG LOVE
j’ {lle ME NOT

AMAZON MUSIC ORIGINAL PLAYLISTS

[oW) Em| (a https://www.amazon.com C] th ()

It <] & A A & amazon.com & ™]

HTTP Strict Transport Security

To defend against sslstrip attacks, a web server
can return (during HTTPS conn.) directive such as:

Strict-Transport-Security: max-age=31536000
includeSubDomains

Directs browser to:

— Only connect to that site using HTTPS (expires in 1yr)
— Promote any HTTP links in pages to HTTPS
— Don’t allow connections w/ cert errors to proceed

Similar to TOFU, requires safe initial connection
— Otherwise, MITM attacker could strip out the header

Many browsers today use a predefined list of HSTS
sites — see https://hstspreload.org/

SSL / TLS Limitations, con’t
Problems that SSL / TLS does not take care of ?

TCP-level denial of service
— SYN flooding
— RST injection

* (but does protect against data injection!)
SQL injection / XSS / server-side coding/logic flaws
Browser coding/logic flaws

User flaws

— Weak passwords

— Phishing

Vulnerabilities introduced by HT TP compatibillity ...

Issues of trust ...

TLS/SSL Trust Issues

o “Commercial certificate authorities protect you from
anyone from whom they are unwilling to take money”

— Matt Blaze, circa 2001

« So how many CAs do we have to worry about,
anyway?

| NON) Keychain Access

é Click to unlock the System Roots keychain. | Q
Keychains
& login Cortifeate Buypass Class 2 Root CA
= . . 7> Root certificate authority
il Micr_estiicatas “ 4| Expires: Friday, October 26, 2040 at 1:38:03 AM Pacific Daylight Time
g Local ltems @ This certificate is valid
= System
O System Roots Name ~ Kind Expires Keychain
k-] AAA Certificate Services certificate Dec 31, 2028, 3:59:59 PM System Roots
] Actalis Authentication Root CA certificate Sep 22, 2030, 4:22:02 AM System Roots
k] AddTrust Class 1 CA Root certificate May 30, 2020, 3:38:31 AM System Roots
k] AddTrust External CA Root certificate May 30, 2020, 3:48:38 AM System Roots
k-] AddTrust Public CA Root certificate May 30, 2020, 3:41:50 AM System Roots
Category] AddTrust Qualified CA Root certificate May 30, 2020, 3:44:50 AM System Roots
,{% All Iltems E] Admin-Root-CA certificate Nov 8, 2021, 11:51:07 PM System Roots
,[_. Passwords] AffirmTrust Commercial certificate Dec 31, 2030, 6:06:06 AM System Roots
Secure Notes] AffirmTrust Networking certificate Dec 31, 2030, 6:08:24 AM System Roots
E My Certificates k] AffirmTrust Premium certificate Dec 31, 2040, 6:10:36 AM System Roots
Keys k] AffirmTrust Premium ECC certificate Dec 31, 2040, 6:20:24 AM System Roots
. -] ANF Global Root CA certificate Jun 5, 2033, 10:45:38 AM System Roots
- Certificates -
k] Apple Root CA certificate Feb 8, 2035, 1:40:36 PM System Roots
. Apple Root CA - G2 certificate Apr 30, 2038, 11:10:089 AM System Roots
k-] Apple Root CA - G3 certificate Apr 30, 2038, 11:19:06 AM System Roots
k] Apple Root Certificate Authority certificate Feb 9, 2025, 4:18:14 PM System Roots
k] ApplicationCA certificate Dec 12, 2017, 7:00:00 AM System Roots
k] ApplicationCA2 Root certificate Mar 12, 2033, 7:00:00 AM System Roots
] Autoridad de...nal CIF A62634068 certificate Dec 31, 2030, 12:38:15 AM System Roots
k] Autoridad de...Estado Venezolano certificate Dec 17, 2030, 3:59:59 PM System Roots
] Baltimore CyberTrust Root certificate May 12, 2025, 4:59:00 PM System Roots
k] Belgium Root CA2 certificate Dec 15, 2021, 12:00:00 AM System Roots
B Buypass Class 2 Root CA certificate Oct 26, 2040, 1:38:03 AM System Roots

7
i

TLS/SSL Trust Issues

o “Commercial certificate authorities protect you from
anyone from whom they are unwilling to take money”
— Matt Blaze, circa 2001

* S0 how many CAs do we have to worry about,
anyway?

« Of course, it's not just their greed that matters ...

News

Solo Iranian hacker takes credit for Comodo
certificate attack
Security researchers split on whether '‘ComodoHacker' is the real deal

By Gregg Keizer
March 27, 2011 08:39 PM ET C) Comments (5) « Recommended (37) [Like <84

Computerworld - A solo Iranian hacker on Saturday claimed responsibility
for stealing multiple SSL certificates belonging to some of the Web's
biggest sites, including Google, Microsoft, Skype and Yahoo.

Early reaction from security experts was mixed, with some believing the
hacker's claim, while others were dubious.

Last week, conjecture had focused on a state-sponsored attack, perhaps
funded or conducted by the Iranian government, that hacked a certificate
reseller affiliated with U.S.-based Comodo.

On March 23, Comodo acknowledged the attack, saying that eight days

earlier, hackers had obtained nine bogus certificates for the log-on sites of
Microsoft's Hotmail, Google's Gmail, the Internet phone and chat service
Skype and Yahoo Mail. A certificate for Mozilla's Firefox add-on site was
also acquired.

News

Solo Iranian hacker takes credit for Comodo
certificate attack

Security researchers split on whether 'ComodoHacker' is the real deal

By Gregg Keizer
March 27, 2011 08:39 PM ET C) Comments (5) « Recommended (37) [KJ Like <84

Where did you learn about cryptography and hacking. Are there books in Persian?
English books? Or are you self-taught, learning from the Internet?

d) I'm self taught, books in Persian and English, but mostly papers in
internet, short papers from experts like Bruce Schneier, RSA people (Ron,
Adi and Leonard) and specially . | learned programming in
Qbasic when | was 9, | started learning cryptography when | was 13

—TUNuUeu OT CONUUCTET DY e Tarmar JoVETTITIENT, Nat TaCKed a CETINTare
reseller affiliated with U.S.-based Comodo.

On March 23, Comodo acknowledged the attack, saying that eight days
earlier, hackers had obtained nine bogus certificates for the log-on sites of
Microsoft's Hotmail, Google's Gmail, the Internet phone and chat service
Skype and Yahoo Mail. A certificate for Mozilla's Firefox add-on site was
also acquired.

CNET » News » InSecurity Complex » Fraudulent Google certificate points to Internet attack

Fraudulent Google certificate
points to Internet attack

Is Iran behind a fraudulent Google.com digital certificate? The
situation is similar to one that happened in March in which spoofed
certificates were traced back to Iran.

"\ | Dby Elinor Mills | August 29, 2011 1:22 PM PDT
‘ g W Follow

A Dutch company appears to have issued a digital certificate for Google.com to someone other
than Google, who may be using it to try to re-direct traffic of users based in Iran.

Yesterday, someone reported on a Google support site that when attempting to log in to Gmail
the browser issued a warning for the digital certificate used as proof that the site is legitimate,
according to this thread on a Google support forum site.

Conticte ———— |

General | Details | Certification Path

This appears to be a
i a Certificate Information fUIIy Valld Cert USIng

This certificate is intended for the following purpose(s): norma I b rowser
» Ensures the identity of a remote computer s va I |d atl on ru Ie S.

* Proves your identity to a remote computer
* Protects e-mail messages
» Ensures software came from software publisher

m

e il lishel - Only detected by
* Refer to the certification authority's statement for details. C h rome d ue to |tS
Issued to: *.google.com recent introduction of

cert “pinning” -
requiring that certs
valid from 7/10/2011 to 7/9/2013 for certain domains
must be signed by

=0 specific CAs rather
Learn more about certficates than any generally
trusted CA.

Issued by: DigiNotar Public CA 2025

[ok]

October 31,2012, 10:49AM

Final Report on DigiNotar Hack Shows Total
Compromise of CA Servers

The attacker who penetrated the Dutch CA DigiNotar last year had complete control of all
eight of the company's certificate-issuing servers during the operation and he may also have
issued some rogue certificates that have not yet been identified. The final report from a

Evidence Suggests DigiNotar, Who Issued Fraudulent
Google Certificate, Was Hacked Years Ago

from the diginot dept

The big news in the security world, obviously, is the fact that a fraudulent Google certificate
made its way out into the wild, apparently targeting internet users in Iran. The Dutch
company DigiNotar has put out a statement saying that it discovered a breach back on July
19th during a security audit, and that fraudulent certificates were generated for "several
dozen” websites. The only one known to have gotten out into the wild is the Google one.

TLS/SSL Trust Issues

“Commercial certificate authorities protect you from
anyone from whom they are unwilling to take money”

— Matt Blaze, circa 2001

So how many CAs do we have to worry about,
anyway?

Of course, it's not just their greed that matters ...

... and it's not just their diligence & security that
matters ...

— “A decade ago, I observed that commercial certificate
authorities protect you from anyone from whom they are
unwilling to take money. That turns out to be wrong, they
don’t even do that much.” - Matt Blaze, circa 2010

Law Enforcement Appliance Subverts SSL

By Ryan Singel &4 March 24,2010 | 1:55 pm | Categories: Surveillance, Threats

That little lock on your browser window indicating you are communicating securely with your bank or e-
mail account may not always mean what you think its means.

Normally when a user visits a secure website, such as Bank of America, Gmail, PayPal or eBay, the
browser examines the website's certificate to verify its authenticity.

At a recent wiretapping convention, however, security researcher Chris Soghoian discovered that a
small company was marketing internet spying boxes to the feds. The boxes were designed to intercept
those communications — without breaking the encryption — by using forged security certificates,
instead of the real ones that websites use to verify secure connections. To use the appliance, the
government would need to acquire a forged certificate from any one of more than 100 trusted Certificate
Authorities.

Law Enforcement Appliance Subverts SSL

By Ryan Singel &4 March 24,2010 | 1:55 pm | Categories: Surveillance, Threats

small company was marketing internet spying boxes to the feds. I he boxes were designed to Intercept
those communications — without breaking the encryption — by using forged security certificates,
instead of the real ones that websites use to verify secure connections. To use the appliance, the
government would need to acquire a forged certificate from any one of more than 100 trusted Certificate
Authorities.

% Click to unlock the System Roots keychain.

Keychains
g’ login
=1 Micro...ertificates
g’ Local ltems
= System
] System Roots

Category

A4 All ltems

... Passwords
Secure Notes

My Certificates

® Keys

Certificates

P
(6 ertifiecte

Fliat

=z
o
DO EREEEE 3

Q

UCA Root

Root certificate
Expires: Sundag‘
@ This certifics

. |

TUBITAK UEK...§layicisi - |
TURKTRUST...a Hizmet s1'
TWCA Global Root CA
TWCA Root Certification I;

UCA Global Root
UCA Root

UTN - DATACorp SGC
UTN-USERFir...ntication @
UTN-USERFirst-Hardwari
UTN-USERFir...twork Appl
UTN-USERFirst-Object
VeriSign Clas...tion Autho1'
VeriSign Clas...tion Author
VeriSign Clas...tion Authoq'
VeriSign Clas...tion Author
VeriSign Clas...tion Autho1I
VeriSign Clas...tion Author
VeriSign Univ...rtification 4

Visa eCommerce Root

P
Cortifiecte
(ot

UCA Root

UCA Root

Root certificate authority
Expires: Sunday, December 30, 2029 at 4:00:00 PM Pacific Standard Ti

® This certificate is valid

p Trust
v Details

Subject Name
Country
Organization
Common Name

Issuer Name
Country
Organization
Common Name

Serial Number
Version

Signature Algorithm
Parameters

Not Valid Before
Not Valid After

Public Key Info

Algorithm

CN
UniTrust
UCA Root

CN
UniTrust
UCA Root

9
3

SHA-1 with RSA Encryption (1.2.840.113549.1.1.5)
none

Wednesday, December 31, 2003 at 4:00:00 PM Pacific Stanc
Sunday, December 30, 2029 at 4:00:00 PM Pacific Standard

RSA Encryption (1.2.840.113549.1.1.1)

Visa Information Delivery [
VRK Gov. Roct CA
WellsSecure...Certificate Authority certificate
XRamp Global...tification Authority certificate

i

certificate

U oy 'y mave oy

Dec 18, 2023, 5:51:08 AM System Roots
Dec 13, 2022, 4:07:54 PM System Roots
Dec 31, 2034, 9:37:19 PM System Roots

175 items

% Click to unlock the System Roots keychain.

Keychains

g’ login

5 Micro...ertificates

g’ Local Items
= System
) System Roots

Category
A4 Allltems
L. Passwords
Secure Notes
My Certificates
(ﬁ) Keys
[-J Certificates

ol ol ol o f ol sl o sl s sF sl

?A"Iflflvl/f .
h - Root certificate au

£/

DoD Root CA 2 \

Expires: Wednesda:
' @ This certificate i

-

Chambers of...merce Root - é
Cisco Root CA 2048 |
Class 2 Primary CA |
Common Policy |
COMODO Certification Authc
ComSign CA |
ComSign Global Root CA
ComSign Secured CA |
D-TRUST Root Class 3 CA 2 2
D-TRUST Roo...ss 3 CA2 EV ::
Deutsche Telekom Root CA 2
Developer ID...rtification Aut|'4
DigiCert Assured ID Root CA.
DigiCert Assured ID Root GZl
DigiCert Assured ID Root G3
DigiCert Global Root CA |
DigiCert Global Root G2
DigiCert Global Root 63 |
DigiCert High...urance EV Rog
DigiCert Trusted Root G4 :
DoD Root CA 2

DST ACES CA X6

DST Root CA X3

i

Keychain Ac

>
Cortifiecte

(et

DoD Root CA 2

DoD Root CA 2

Root certificate authority
Expires: Wednesday, December 5, 2029 at 7:00:10 AM Pacific Stan

® This certificate is valid

p Trust
v Details

Subject Name
Country
Organization
Organizational Unit
Organizational Unit
Common Name

Issuer Name
Country
Organization
Organizational Unit
Organizational Unit
Common Name

Serial Number
Version

Signature Algorithm
Parameters

Not Valid Before

us

U.S. Government
DoD

PKI

DoD Root CA 2

us

U.S. Government
DoD

PKI

DoD Root CA 2

5
3

SHA-1 with RSA Encryption (1.2.840.113548.1.1.5)
none

Mecnday, December 13, 2004 at 7:00:10 AM Pacific Stanc

certificate
certificate
certificate

Dec 5, 2029, 7:00:10 AM System Roots
Nov 20, 2017, 1:19:58 PM System Roots
Sep 30, 2021, 7:01:15 AM System Roots

175 items

TLS/SSL Trust Issues

“Commercial certificate authorities protect you from anyone
from whom they are unwilling to take money”

— Matt Blaze, circa 2001

So how many CAs do we have to worry about,
anyway?

Of course, it's not just their greed that matters ...

... and it's not just their diligence & security that
matters ...

— “A decade ago, I observed that commercial certificate authorities
protect you from anyone from whom they are unwilling to take
money. That turns out to be wrong; they don't even do that much.” -

Matt Blaze, circa 2010

You also have to trust the developers of libraries ...
— Both for clients when validating certs ...

So here's the Apple bug:

static 0OSStatus

SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, SSLBuffer signedParams,

fail:

uint8_t *signature, UIntl6é signatureLen)

OSStatus err;

if ((err = SSLHashSHAl.update(&hashCtx, &serverRandom)) != 0)
goto fail;

if ((err = SSLHashSHAl.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail;

if ((err = SSLHashSHAl.final(&hashCtx, &hashOut)) != 0)
goto fail;

SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);

return err;

So here's the Apple bug:

static 0OSStatus

SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, SSLBuffer signedParams,

fail:

uint8_t *signature, UIntl6é signatureLen)

OSStatus err;

if ((err = SSLHashSHAl.update(&hashCtx, &serverRandom)) != 0)
goto fail;

if ((err = SSLHashSHAl.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail;

if ((err = SSLHashSHAl.final(&hashCtx, &hashOut)) != 0)
goto fail;

SSLFreeBuffer(&signedHas
SSLFreeBuffer(&hashCtx);

return err;

So here's the Apple bug:

static OSStatus
SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, SSLBuffer signedParams,

uint8_t *signature, UIntl6é signatureLen)

OSStatus err;

/G;:((err = SSLHashSHAl.update(&hashCtx, &serverRandom)) != ;;\\
goto fail;

if ((err = SSLHashSHAl.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail;

if ((err = SSLHashSHAl.final(&hashCtx, &hashOut)) != 0)
goto fail;

SSLFreeBuffer(&signedHashes);

fail:

SSLFreeBuffer(&hashCtx);

return err;

So here's the Apple bug:

static 0OSStatus
SSLVerifySignedS

OSStatus

erverKeyExchange(SSLContext *ctx, bool isRsa, SSLBuffer signedParams,

uint8_t *signature, UIntl6é signatureLen)

err;

if ((err

if ((err

if ((err

= SSLHashSHAl.update(&hashCtx, &serverRandom)) != ;;\\
goto fail;

= SSLHashSHAl.update(&hashCtx, &signedParams)) != 0)
goto fail;

goto fail;

= SSLHashSHAl.final(&hashCtx, &hashOut)) != 0)
goto fail;

/

fail:

SSLFreeBuffer(&signedHashes);

SSLFreeBuffer(&hashCtx);

return err;

So here's the Apple bug:

static OSStatus
SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, SSLBuffer signedParams,

uint8_t *signature, UIntl6é signatureLen)

OSStatus err;

if ((err = SSLHashSHAl.update(&hashCtx, &serverRandom)) != &;\\\
goto fail;
SSLHashSHAl.update(&hashCtx, &signedParams)) != 0)

if ((err

goto fail;

if ((err SSLHashSHAl.final (&hashCtx, &hashOut)) != 0)

goto fail;

SSLFreeBuffer(&signedHashes);

fail:

SSLFreeBuffer(&hashCtx);

return err;

So here's the Apple bug:

static OSStatus
SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, SSLBuffer signedParams,

uint8_t *signature, UIntl6é signatureLen)

{
OSStatus err;
/1;;((err = SSLHashSHAl.update(&hashCtx, &serverRandom)) != 0;\\\

goto fail;
SSLHashSHAl.update(&hashCtx, &signedParams)) != 0)

if ((err

goto fail;

if ((err SSLHashSHAl.final(&hashCtx, &hashOut)) != 0)

goto fail;

e Y

SSLFreeBuffer(&signedHashes);

SSLFreeBuffer(&hashCtx);

So here's the Apple bug:

static OSStatus
SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, SSLBuffer signedParams,

uint8_t *signature, UIntl6é signatureLen)

OSStatus err;

if ((err = SSLHashSHAl.update(&hashCtx, &serverRandom)) != &;\\\
goto fail;
SSLHashSHAl.update(&hashCtx, &signedParams)) != 0)

if ((err

goto fail;

if ((err SSLHashSHAl.final (&hashCtx, &hashOut)) != 0)

goto fail;

SSLFreeBuffer(&signedHashes);

SSLFreeBuffer(&hashCtx);

So here's the Apple bug:

static OSStatus
SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, SSLBuffer signedParams,

uint8_t *signature, UIntl6é signatureLen)

OSStatus err;

if ((err = SSLHashSHAl.update(&hashCtx, &serverRandom)) != &;\\\
goto fail;
SSLHashSHAl.update(&hashCtx, &signedParams)) != 0)

if ((err

goto fail;

if ((err SSLHashSHAl.final (&hashCtx, &hashOut)) != 0)

goto fail;

SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);

TLS/SSL Trust Issues

« “Commercial certificate authorities protect you from anyone
from whom they are unwilling to take money

— Matt Blaze, circa 2001

* So how many CAs do we have to worry about,
anyway?

« Of course, it's not just their greed that matters ...

« ... and it's not just their diligence & security that
matters ...

— “A decade ago, I observed that commercial certificate
authorities protect you from anyone from whom they are
unwzlllng to take money. That turns out to be wrong, they
don't even do that much.” - Matt Blaze, circa 2010

* You also have to trust the developers of libraries ...
— Both for clients when validating certs ...
— and servers when generating certs

Schneier on Security
A blog covering security and security technology.

« Friday Squid Blogging: Tentacle Arm | Main | Hijacker Working at Heathrow Airport

»

May 19, 2008

Random Number Bug in Debian Linux
This is a big deal:

On May 13th, 2008 the Debian project announced that Luciano Bello
found an interesting vulnerability in the OpenSSL package they were
distributing. The bug in question was caused by the removal of the
following line of code from md_rand.c

MD Update(&m,buf,j);

[-+ 1]
MD Update(&m,buf ; /* purify complains */

Removing this code has the side effect of crippling the seeding process for
the OpenSSL PRNG. Instead of mixing in random data for the initial seed,
the only "random" value that was used was the current process ID. On the
Linux platform, the default maximum process ID is 32,768, resulting in a
very small number of seed values|being used for all PRNG operations.

Schneier on Security
A blog covering security and security technology.

« Friday Squid Blogging: Tentacle Arm | Main | Hijacker Working at Heathrow Airport

»

May 19, 2008

Random Number Bug in Debian Linux
This is a big deal:

On May 13th, 2008 the Debian project announced that Luciano Bello
found an interesting vulnerability in the OpenSSL package they were
distributing. The bug in question was caused by the removal of the
following line of code from md_rand.c

MD Update(&m,buf,j);

[.- 1
MD Update(&m,buf,j); /* purify complains */

Removing this code has the side effect of crippling the seeding process for
the OpenSSL PRNG. Instead of mixing in random data for the initial seed,
the only "random" value that was used was the current process ID. On the
Linux platform, the default maximum process ID is 32,768, resulting in a
very small number of seed values|being used for all PRNG operations.

5 Minute Break

Questions Before We Proceed?

Securing DNS Lookups

 How can we ensure when clients look up names
with DNS, they can answers they receive?

* |dea #1: do DNS lookups over TLS

— (assuming either we run DNS over TCP, or we use
“Datagram TLS")

Securing DNS using SSL / TLS?

root DNS server ('.")
Host at xyz .poly.edu g

wants IP address for
galia.cs.umass.edu >
TLD DNS server ('.edu')
4 N
local DNS server | 'w_//’n

(resolver) 5
128.238.1.68

|[dea: connections
{1,8}, {2,3}, {4,5}

authoritative DNS server

VL
and {6’7} all run n ('umass.edu', 'cs.umass.edu')
over SSL / TLS dns.cs.umass.edu

requesting host
xXyz.poly.edu @ gaia.cs.umass.edu

Securing DNS Lookups

« How can we ensure when clients look up names
with DNS, they can trust answers they receive?

* |dea #1: do DNS lookups over TLS

— (assuming either we run DNS over TCP, or we use
“Datagram TLS™)

— Issues?
« Performance: DNS is very lightweight. TLS is not.

» Caching: crucial for DNS scaling. But then how do we keep
authentication assurances?

— Object security vs. Channel security

Securing DNS Lookups

« How can we ensure when clients look up names
with DNS, they can trust answers they receive?

* |dea #1: do DNS lookups over TLS

— (assuming either we run DNS over TCP, or we use
“Datagram TLS")

— Issues?
« Performance: DNS is very lightweight. TLS is not.

» Caching: crucial for DNS scaling. But then how do we keep
authentication assurances?

— Object security vs. Channel security

 |dea #2: make DNS results like certs

— |l.e., a verifiable signature that guarantees who
generated a piece of data; signing happens off-line

Operation of DNSSEC

« DNSSEC = standardized DNS security
extensions currently being deployed

- As a resolver works its way from DNS root down
to final name server for a name, at each level it
gets a signed statement regarding the key(s)
used by the next level

- This builds up a chain of trusted keys
- Resolver has root’s key

- The final answer that the resolver receives is
signed by that level's key

- Resolver can trust it's the right key because of chain of
support from higher levels

* All keys as well as signed results are

Ordinary DNS:

www.google.com A?

Client’s

Resolver k.root-servers.net

Ordinary DNS:

www.google.com A? g
Client’s
[] k.root-servers.net ﬂ

Resolver

Ordinary DNS:

www.google.com A?

Client's |+
Resolver |[com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30

k.root-servers.net

Ordinary DNS:

www.google.com A?

Client's |« >
o _ .

Ordinary DNS:

www.google.com A?

Client's @« >
k.root-servers.net
[Resolver] []
a.gtld-servers.net A 192.5.6.30

Ordinary DNS:

www.google.com A?

Client's |+
Resolver |com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30

k.root-servers.net

(The line above shows com. rather than .com because
technically that’s the actual name, and that’'s what the Unix
dig utility shows; but the convention is to call it “dot-com”)

Ordinary DNS:

www.google.com A?
Client’s
Resolver

com. NS a.itld-servers.net

A

>
[k.root-servers.net]

Ordinary DNS:

www.google.com A?

A

Client’s > i t
Resolver | |com. NS a.gtld-servers.net .root-servers.ne

a.gtld-servers.net A 192.5.6.30

Ordinary DNS:

www.google.com A?

A

Client’s > o t
Resolver | |com. NS a.gtld-servers.net OOESEIVETS.ME

a.gtld-servers.net A 192.5.6.30

www.google.com A?

. , >
[Cllents] ﬁ a_gtld-servers.net]]

Resolver —

Ordinary DNS:

www.google.com A?

Client's |+
Resolver | [com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30

k.root-servers.net

www.google.com A?

Client's
Resolver | | google.com. NS ns1.google.com
ns1.google.com A 216.239.32.10

a.gtld-servers.net

Ordinary DNS:

www.google.com A? g
Client's |+
[] [k.root-servers.net]

Resolver | |com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30

www.google.com A?

[Client’s

<
- _

>
[a.gtld-servers.net J

Ordinary DNS:

www.google.com A"

Client's |+
Resolver | [com. NS a.gtld-servers.net

>
[k.root-servers.net]
a.gtld-servers.net A 192.5.6.30

www.google.com A"

Client's |+
Resolver | | google.com. NS ns1.google.com

>
[a.gtld-servers.net]
ns1.google.com A 216.239.32.10

www.google.com A?

Client's |« > 1 |
Resolver | www.google.com. A 74.125.24.14 ns1.google.com

Ordinary DNS:

www.google.com A?

A

Client’s i’ o t
Resolver | | com. NS a.gtld-servers.net (IOOESEIVETS.ME

a.gtld-servers.net A 192.5.6.30

www.googleéom A?

~ >

Client's <«

[ns1.google.com]

DNSSEC (with simplifications):

www.google.com A?

Client's |+
Resolver |[com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30

k.root-servers.net

com. DS hash-of-com’s-key
com. RRSIG DS signature-of-that-
DS-record-using-root’s-key

DNSSEC (with simplifications):

www.google.com A?

Client's
Resolver |com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30

k.root-servers.net

com. DS hash-of-com’s-key
com. RRSIG DS signature-of-that-
DS-record-using-root’s-key

Up through here is the same as before ...

DNSSEC (with simplifications):

www.google.com A?

Client's
Resolver | |com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30

k.root-servers.net

com. DS hash-of-com’s-key
com. RRSIG DS signature-of-that-
DS-record-using-root’s-key

This new RR (“Delegation Signer”) lets us tell if we have a
correct copy of . com’s public key (by comparing hash values)

DNSSEC (with simplifications):

www.google.com A?

Client's
Resolver | |com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30

k.root-servers.net

com. DS hash-of-com’s-key
com. RRSIG DS signature-of-that-
DS-record-using-root's-key

The actual process of retrieving .com’s public key is
complicated (involves multiple keys) so we’ll defer it for a bit ...

DNSSEC (with simplifications):

www.google.com A?

Client's |+
Resolver |[com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30

k.root-servers.net

com. DS hash-of-com’s-key
com. RRSIG DS signature-of-that-
DS-record-using-root’s-key

This new RR specifies a signature over another RR
... in this case, the signature covers the above DS
record, and is made using the root’s private key

DNSSEC (with simplifications):

www.google.com A?

Client's |+
Resolver |[com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30

k.root-servers.net

com. DS hash-of-com’s-key
com. RRSIG DS signature-of-that-
DS-record-using-root’s-key

The resolver has the root’s public key
hardwired into it. The client only proceeds
with DNSSEC if it can validate the signature.

DNSSEC (with simplifications):

www.google.com A?

Client's
Resolver |com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30

k.root-servers.net

com. DS hash-of-com’s-key
com. RRSIG DS signature-of-that-
DS-record-using-root’s-key

Note: there’s no signature over the NS or A information! If an
attacker has fiddled with those, the resolver will ultimately find
it has a record for which it can’t verify the signature.

DNSSEC (with simplifications):

www.google.com A?

Client’s g
[a.gtld-servers.net]
Resolver

)

DNSSEC (with simplifications):

www.google.com A?

Client's |=
Resolver || google.com. NS ns1.google.com
ns1.google.com. A 216.239.32.10

a.gtld-servers.net

google.com. DS hash-of-
google.com’s-key

google.com. RRSIG DS signature-
of-that-DS-record-using-com’s-key

DNSSEC (with simplifications):

www.google.com A?

Client's |< >
Resolver a.gtld-servers.net

DNSSEC (with simplifications):

www.google.com A?

Client’s ’[1 |]
Resolver ns1.google.com

)

DNSSEC (with simplifications):

Client’s
Resolver

www.google.com A?

<

>

www.google.com. A 74.125.24.14

www.google.com. RRSIG A
signature-of-the-A-records-using-
google.com’s-key

ns1.google.com

DNSSEC (with simplifications):

www.google.com A?

Client's |+ >
Resolver ‘ ns1.google.com

DNSSEC (with simplifications):

www.google.com A?

Client's |+ >
Resolver ‘ ns1.google.com

DNSSEC - Mallory attacks!

Client’s
Resolver

www.google.com A?

<

www.google.com. A 6.6.6.6

ns1.evil.com

DNSSEC - Mallory attacks!

www.google.com A?

>
[ns1.evil.com }

Client's <
Resolver

www.google.com. A 6.6.6.6

DNSSEC - Mallory attacks!

www.google.com A?

Client's
Resolver | | www.google.com. A 6.6.6.6
www.google.com RRSIG A
signature-of-the-A-record-using-
evil.com’s-key

ns1.evil.com

DNSSEC - Mallory attacks!

www.google.com A?

Client's < > e
Resolver = |www.google.com. A 6.6.6.6 nsi.evil.com

DNSSEC - Mallory attacks!

www.google.com A?

Client's < > e
Resolver = |www.google.com. A 6.6.6.6 nsi.evil.com

DNSSEC - Mallory attacks!

www.google.com A?

Client's
Resolver | | www.google.com. A 6.6.6.6
www.google.com RRSIG A
signature-of-the-A-record-using-
google.com’s-key

ns1.evil.com

DNSSEC - Mallory attacks!

www.google.com A?

Client's < —
Resolver = |www.google.com. A 6.6.6.6 nsi.evil.com

DNSSEC: Accessing keys

. DNSKEY?

Client’s g
k.root-servers.net
Resolver

DNSSEC: Accessing keys

. DNSKEY?

Client’s g
k.root-servers.net
Resolver

DNSSEC: Accessing keys

. DNSKEY?

>

Client's
Resolver | |. DNSKEY cryptogoop for root’s
key-signing key (KSK)

. DNSKEY cryptogoop for root’s
zone-signing key (ZSK)

. DNSKEY cryptogoop for
possibly other keys

k.root-servers.net

. RRSIG DNSKEY signature-of-
those-DNSKEY-records-using-
root’s-KSK

DNSSEC: Accessing keys

. DNSKEY?

>

Client's
Resolver |. DNSKEY cryptogoop for root’s
key-signing key (KSK)

. DNSKEY cryptogoop for root’s
zone-signing key (ZSK)

. DNSKEY cryptogoop for
possibly other keys

k.root-servers.net

. RRSIG DNSKEY signature-of-
those-DNSKEY-records-using-
root’s-KSK

Each DNSKEY is a public key plus a
description of the algorithms it's
associated with (e.g., RSA+SHA256)

DNSSEC: Accessing keys

Client’s
Resolver

. DNSKEY?

>

<

. DNSKEY cryptogoop for root’s
key-signing key (KSK)

. DNSKEY cryptogoop for root’s
zone-signing key (ZSK)

. DNSKEY cryptogoop for
possibly other keys

. RRSIG DNSKEY signature-of-
those-DNSKEY-records-using-
root’s-KSK

The KSK is used to sign all of
the DNSKEY entries in the zone.

k.root-servers.net

DNSSEC: Accessing keys

. DNSKEY?

>

Client's
Resolver | |. DNSKEY cryptogoop for root’s
key-signing key (KSK)

. DNSKEY cryptogoop for root’s
zone-signing key (ZSK)

. DNSKEY cryptogoop for
possibly other keys

k.root-servers.net

. RRSIG DNSKEY signature-of-
those-DNSKEY-records-using-
root’s-KSK

The client has a hash of the root's KSK
hardwired into its config as a trust anchor.

DNSSEC: Accessing keys

. DNSKEY?

>

Client's
Resolver | |. DNSKEY cryptogoop for root’s
key-signing key (KSK)

. DNSKEY cryptogoop for root’s
zone-signing key (ZSK)

. DNSKEY cryptogoop for
possibly other keys

k.root-servers.net

. RRSIG DNSKEY signature-of-
those-DNSKEY-records-using-
root’s-KSK

For everything below the root (e.g., .com and google.com)
we get a hash of the KSK via a DS record, as shown earlier,

so we can tell if we get the right KSK in a DNSKEY entry.

DNSSEC: Accessing keys

. DNSKEY?

>

Client's
Resolver | |. DNSKEY cryptogoop for root’s
key-signing key (KSK)

. DNSKEY cryptogoop for root’s
zone-signing key (ZSK)

. DNSKEY cryptogoop for
possibly other keys

k.root-servers.net

. RRSIG DNSKEY signature-of-
those-DNSKEY-records-using-
root’s-KSK

The ZSK is used for signing all of the other RRSIG entries in the
zone, including DS records for subzones.
(E.g., .com signs its DS record for google.com using .com's ZSK

DNSSEC: Accessing keys

. DNSKEY?

>

Client's
Resolver | |. DNSKEY cryptogoop for root’s
key-signing key (KSK)

. DNSKEY cryptogoop for root’s
zone-signing key (ZSK)

. DNSKEY cryptogoop for
possibly other keys

k.root-servers.net

. RRSIG DNSKEY signature-of-
those-DNSKEY-records-using-
root’s-KSK

Having separate key-signing-keys vs. zone-signing-keys allows a
zone to change its ZSK without needing to get its parent to re-sign,
since parent only signs the KSK. Enables frequent key rollover.

Issues With DNSSEC ?

* Issue #1: Replies are Big

% dig +dnssec berkeley.edu

% dig +dnssec berkeley.edu

3 === DIG 9.8.3-P1 <<= +dnssec berkeley.edu

33 global options: +cmd

33 Got answer:

33 —>>HEADER<=- opcode: QUERY, status: NOERROR, id: 6@422
33 flags: qr rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: S, ADDITIONAL: 27

; OPT PSEUDOSECTION:

HH
; EDNS: version: 8, flags: do; udp: 4896

33 QUESTION SECTION:
sherkeley.edu.

33 ANSWER SECTION:
berkeley.edu.
berkeley.edu.
berkeley.edu.

33 AUTHORITY SECTION:
berkeley.edu.
berkeley.edu.
berkeley.edu.
berkeley.edu.
berkeley.edu.
berkeley.edu.
berkeley.edu.
berkeley.edu.

35 ADDITIONAL SECTION:
aodnsz .berkeley.edu.
phloem.uoregon.edu.
phloem.uoregon.edu.
adns2.berkeley.edu.
adns2.berkeley.edu.
shs-pb.isc.org.
shs-pb.isc.org.
aodnsl.berkeley.edu.
aodnsl.berkeley.edu.
adnsl.berkeley.edu.
adnsl.berkeley.edu.
aodns2 .berkeley.edu.
aodnhs2.berkeley.edu.
adns2.berkeley.edu.
adns2.berkeley.edu.
adns2.berkeley.edu.
adns2.berkeley.edu.
shs-pb.isc.org.
aqodnsl.berkeley.edu.
aodnhsl.berkeley.edu.
aodnsl.berkeley.edu.
aodnsl.berkeley.edu.
adnsl.berkeley.edu.
adnsl.berkeley.edu.
adnsl.berkeley.edu.
adnsl.berkeley.edu.

198
198
198

18536
18536
18536
18536
18536
18536
16@12
10012

6294
75123
13252
6294
7474
6524
46194
6294
2523
1959
7474
6294
6294
6294
6294
168229
168229
6524
6294
6294
168229
108229
1959
1989
108229
108229

IN

A

RRSIG
RRSIG

NS
NS
NS
NS
NS

RRSIG
RRSIG

AdhA

AhhA

Adhh

AhhA

Adhh

RRSIG
RRSIG
RRSIG
RRSIG
RRSIG
RRSIG
RRSIG
RRSIG
RRSIG
RRSIG
RRSIG
RRSIG
RRSIG
RRSIG
RRSIG

128.32.2683.137

3,419-byte reply

A 18 2 300 20168906161321 20168902155734 20552 berkeley.edu. CorreKSRPffJjJIbMuoAi3jQPEKoez6nEP jumLRZt0OCPY0SbXHYMNYSTE R/Q01/hfBUKSE
A 18 2 300 20160906161321 20160902155734 55763 berkeley.edu. E2CIUSBLvWHLXTLKEWX47VYatSKqrx(QbW2396REcIBM4bndqwkHTIrrHS QrovIedG+Gi6

shs-pb.isc.org.

aodnsl.berkeley.edu.
phloem.uoregon.edu.
adnsl.berkeley.edu.
aodns2 .berkeley.edu.
adns2.berkeley.edu.

NS 16 2 16300 20160986161321 26160992155734 20552 berkeley.edu. ghlrng@rISbmaRWxJIcF/pRIzCa30XrpPIftedSYpTk/ I6LFY jKKEB1BF OwVyKG3Nu
NS 18 2 16308 20168986161321 20168982155734 55763 berkeley.edu. rL2TiwdRWWZpu/zUThigwT7sS5SwlZp8gnby4ulZNcly73a3ue3XBjGrf x2xDKt/AP

128.253.35.148
128.223.32.35

2001 :468 :d01:26: :86df 12023

128.32.136.14
2687:f148:ffff:fffe::e
192.5.4.1
20081:500:2e::1
192.35.225.133

26087 :f010:3f5:5000: :ff :fedd 53

128.32.136.3
2687 :f140:ffff:fffe::3

A 18 3 16500 20168906163122 26160902154100 20552 berkeley.edu.
A4 16 3 16500 20160906163122 20168902154108 55763 berkeley.edu.
A4 18 3 16500 20160906155418 20160902145750 20552 berkeley.edu.
A 18 3 168600 201608906155418 20166902145750 55763 berkeley.edu.

Lwdt2yxf TFfwLThvBx/JZdAdCPK 3072y +YMVYzG44f pLmn6SWHE/EGZ2IA sx2CjQE3/
ele04M4BGzBONYRE 1 f8DpozUSSeQrucZoctFpyGh LUHYEK T TheskK3xw dWSGwhDzzq
WKB+3Q LDd/6kujgkecde3d50IMyDIVRWOMZXGESK YD/ TWE 1155c2zx 66X Q7XD2ZKfORO
hETE9n7x16PWr60YDIYdDUDZWyHMKNDESxSRhuIgex+C37rnlncSolYj HLAdQKHCE]

AdAA 10 3 10800 20168906154405 20168902156354 26552 berkeley.edu. jXP79E6IyvkchNY3DxbvONENCESHmgWKKSHoOFgxHauDvkYiPEi166/6xNI th¥2v2a
AdAA 10 3 10800 20168906154405 201609082158354 55763 berkeley.edu. bCCoSShQ/7HHYbSpib/ZC1t868g315wLe LATLE1hILFDZY IMxQySgk LG vUShzKD
A B 3 7200 20160928233689 2016A329233609 13953 isc.org. dulqltzZiMYEi962A4AkZ2BTEcHeR2vdBHjePEE2S2ABYAIf qX/s+zDRai A/EKRiGDY j38iBp6o
A 18 3 16800 20160906152083 201608992151259 20552 berkeley.edu. cMXajdGulgketteliCl0AMI232yLT2zFxDWf mBEUWECIS?0LOVPLEZDG S6hhAKo78d
A 16 3 16800 26160906152083 20160992151259 B5763 berkeley.edu. pHACF3XdiELFuLPeSkroahEMUBvgnNI4+s008Z2861PMaMgwrbrNEile M7FMOATr14
AdAA 10 3 16300 20168906162655 20160902155822 20552 berkeley.edu. T+LsA9XpWS2/HiZUit¥PQeP3C59yvkP4 L fpfaf JdeoRBUkIe2zBE+dldU Aq¥2oxE
AdAA 10 3 109800 2016@906162655 20168902155822 55763 berkeley.edu. BMsWj9LiDHKW2CJUBGenh Q91 /csxboF7IKyxyVZbyl1E/PEUDjGxyBY dBZCAiU
A 18 3 16800 20160905162046 20160991152849 20552 berkeley.edu. dubiBLYc+8HfbEAsSST3gnRDwXgsQHEWSxgRoSHXFC/KBURYS+Lygkdni XAZfx1+t7m
A 16 3 16800 20160905162046 20160991152849 B5763 berkeley.edu. x6GHsdLIKhAAIWQYRILXIGAT av+x0z1¥CK/Z+XGARS jWOUWIPPTYTT/HL TXNYU261Rx
AdAA 10 3 10800 2016@906161659 20168902168412 26552 berkeley.edu. 122a8F87Tp22T3bcZX7sPUxzMIBrsoNvEZzo7 LQTESPkpSSUndyLE7Az] 2X7j9K5
AdAA 18 3 16800 20168906161659 20168902160412 55763 berkeley.edu. cebSEKoSg9DCEMWDYeCagKibWIUMnmXMTZN4A41MREuvIHI+0xASmtQhx Fuksjfo

Issues With DNSSEC ?

* Issue #1: Replies are Big
— E.g., “dig +dnssec berkeley.edu” can return 3400+ B
— DoS amplification
— Increased latency on low-capacity links
— Headaches w/ older libraries that assume replies < 512B

Issues With DNSSEC ?

* |Issue #1: Replies are Big
— E.g., “dig +dnssec berkeley.edu’ can return 3400+ B
— DoS amplification
— Increased latency on low-capacity links
— Headaches w/ older libraries that assume replies < 512B

 Issue #2: Partial deployment
— What do you do with unsigned/unvalidated results?
— If you trust them, weakens incentive to upgrade
— If you don't trust them, a whole lot of things break

Issues With DNSSEC, con’t

 |ssue #3: Management headaches

— What happens if when updating your site’s keys you
make a mistake?

— Suddenly your Entire Site Breaks

* |ssue #4: Negative results (“no such name”)
— What statement does the nameserver sign?

— If “gabluph.google.com” doesn’t exist, then have to do
dynamic key-signing (expensive) for any bogus request
* DoS vulnerability
— Instead, sign (off-line) statements about order of names
« E.g., sign “gabby.google.com followed by gabrunk.google.com”
* Thus, can see that gabluph.google.com can'’t exist

— But: now attacker can enumerate all names that exist :-(

Issues With DNSSEC, con’t

 |Issue #5: Who do you really trust?

— For your laptop (say), who does all the “grunt work”™ of
fetching keys & validating DNSSEC signatures?

« Convenient answer: your laptop's local resolver
— ... which you acquire via DHCP in your local coffeeshop

— |l.e., exactly the most-feared potentially untrustworthy
part of the DNS resolution process!

 Alternatives?
= Your laptop needs to do all the validation work itself :-(

