
Paxson
Spring 2017

CS 161
Computer Security Project 2

Part 1 Due: March 15, 2017, 11:59PM

Part 2 Due: April 7, 2017, 11:59PM

Part 3 Due: April 17, 2017, 11:59PM

Version 1.1: April 14, 2017

Introduction

Storing files on a server and sharing them with friends and collaborators is very useful.
Commercial services like Dropbox or Google Drive are popular examples of a file store
service (with convenient filesystem interfaces). But what if you couldn’t trust the server you
wanted to store your files on? What if you wanted to securely share and collaborate on files,
even if the owner of the server is malicious?

In this project, you’ll use the cryptographic tools we’ve taught you to build a file storage
client that’s secure and efficient despite storing all of your data on a malicious storage server.

Getting Started

For this project, you can work in teams of up to 2 people. We want you to get your hands
dirty designing and implementing your system. There are three parts of the project, each
with its own deadline.

We provide you a framework off of which to build for this project. All of your code should
go in client.py. Full documentation for the provided code is available online at
http://icir.org/vern/cs161-sp17/projects/encrypted-file-store/docs/.

You must use Python 3 and the crypto API we provide you (which is based on
and requires PyCrypto 2.6.1) for this project.

These requirements are already provided for you on all the following instructional machines:

• hive{1-30}.cs.berkeley.edu (330 Soda)

• s271-{1-35}.cs.berkeley.edu (271 Soda)

• s273-{1-34}.cs.berkeley.edu (273 Soda)

Page 1 of 18

http://icir.org/vern/cs161-sp17/projects/encrypted-file-store/docs/


• s275-{1-34}.cs.berkeley.edu (275 Soda)

• s277-{1-30}.cs.berkeley.edu (277 Soda)

Note that python defaults to Python2 on most machines, including Hive. You can invoke
Python3 using the python3 command. If you aren’t sure what version of Python you have,
check the output of python --version and python3 --version.

See the Example Workflow section for a step-by-step guide.

You should strive to write clean, secure code. Follow general Python best practices.1

Remember to follow all the steps in the submission instructions for each part of
this project!

Secure File Store

Your task is to design and implement a secure file store. This file store can be used to store
your own files securely, or to share your files with other people you trust.

Your implementation should have two properties:

Confidentiality. Any data placed in the file store should be available only to you
and people you share the file with. In particular, the server should not be able to
learn any bits of information of any file you store, nor of the name of any file you
store.

Integrity. You should be able to detect if any of your files have been modified while
stored on the server and reject them if they have been. More formally, you should
only accept changes to a file if the change was performed by either you or someone
with whom you have shared access to the file.

Note on security parameters. It is sufficient that these properties hold with very high
probability (i.e., no more risk than arises from brute forcing well-chosen cryptographic keys).

You are given access to two servers:

1. A storage server, which is untrusted, where you will store your files. It has three
methods:

• put(id, value), which stores value at id

1“Hitchhiker’s Guide to Python” has a good section on Python Style: http://docs.python-guide.

org/en/latest/writing/style/. Another good resource is the CS61a Style Guide: http://cs61a.org/

articles/style_guide.html.

Project 2 Page 2 of 18 CS 161 – SP 17

http://docs.python-guide.org/en/latest/writing/style/
http://docs.python-guide.org/en/latest/writing/style/
http://cs61a.org/articles/style_guide.html
http://cs61a.org/articles/style_guide.html


• get(id), which returns the value stored at id

• delete(id), which deletes the value stored at id

2. A public key server, which is trusted, that allows you to receive other users’ public
keys. You have a secure channel to the public key server. It has two methods:

• get public key(username), which returns the public key for username

• put public key(username, pubkey), which sets the public key for your
username

You are not to change the code for either server. If you do, your code will not work
with our autograder and you will get no credit.

The storage server is, in practice, just a key-value store. The files you upload to the server
are strings of text data. The storage server is untrusted—it can perform arbitrary malicious
actions to any data you store there. You should protect the confidentiality and integrity of
any data you store on the server.

The storage server has one namespace, so anything written by one user can be read or
overwritten by any other user who knows the id. Clients interacting with the storage
server must take care to ensure that their own files are not overwritten by other clients.
Other users or clients might be malicious.

We provide you a framework off of which to build:

• client.py

Where you will write your Client implementation. Put all of your code in this file.

• base client.py

Contains the base class you will subclass for your client.

• insecure client.py

Contains a baseline implementation which is functionally correct, but has no security
built in. It is described in the Reference Implementation Section. It is very simple (at
only 50 lines).

• crypto.py

Contains the provided cryptographic API you must use. Your client will be passed a
Crypto object which you will use to access this API.

• servers.py

Contains the (non-malicious) StorageServer and PublicKeyServer implementations.
Your code will be graded using a malicious StorageServer.

• util.py

Contains potentially useful utility functions, like object to string serialization.

Project 2 Page 3 of 18 CS 161 – SP 17



• run part1 tests.py

A Python script to run the provided tests for Part 1.

• run part2 tests.py

A Python script to run the provided tests for Part 2.

• run part3 tests.py

A Python script to run the provided tests for Part 3.

The documentation for all these files is available online at http://icir.org/vern/

cs161-sp17/projects/encrypted-file-store/docs/.

You must use our provided crypto.py API for all of your security-critical operations. Do
not implement your own versions of symmetric (or asymmetric) key operations. This API
has access to all the raw primitives we have taught you. Do not create a new instance of the
Crypto object: use the one passed to you during initialization. It also has a secure random-
bytes generator and other accessory methods. You should inspect it to see how it calls into
PyCrypto, to understand what security properties you can expect out of this module. We
have provided this API to you as a cleaner interface than the hundred possible methods in
PyCrypto, and one that operates on strings for easier debugging. But we expect that you
will understand the consequences of how this code behaves. You must NOT call into
PyCrypto yourself.

The skeleton provided in client.py calls BaseClient. init (), which sets up the
client attributes, and calls the method generate public key pair(). This method will
automatically put the key on the public key server, and save a copy of your private key
to your filesystem. This is the only persistent state that your client can use (you can
assume that for the same username, a client will have the same public/private keys even
if restarted). Your client code should call this method exactly once.

Your code must not spawn other processes, read or write to the file system, open any
network connections, or otherwise attack the autograder. We will run your code in an
isolated sandbox. Any adversarial behavior will be seen as cheating.

The only exception your code may raise is an IntegrityError. Your code should handle
all other exceptions.

Project 2 Page 4 of 18 CS 161 – SP 17

http://icir.org/vern/cs161-sp17/projects/encrypted-file-store/docs/
http://icir.org/vern/cs161-sp17/projects/encrypted-file-store/docs/


Part 1: A simple, but secure client

You may focus first on Part 1 and start later parts only after you’ve completed Part 1. Part 1
is designed to get you familiar with the API and crypto operations.

Part 1 is due on March 15, 2017, at 11:59PM.

Question 1 Simple Upload/Download (25 points)
Implement a file store with a secure (but possibly inefficient) upload/download interface.
For Question 1, your task is to implement the methods upload and download.

The methods must ensure the following properties hold. See RFC 2119 for the
definitions of MUST, MUST NOT, SHOULD, and MAY.

Property 1 (Benign Setting) When not under attack by the storage server or
another user, download(name) MUST return the last value stored at name by the
current user, or None if no such file exists. It MUST NOT raise IntegrityError

or any other error.

Property 1 (Attack Setting) download(name) MUST NOT ever return an in-
correct value. A value (excluding None) is “incorrect” if it is not one of the values
currently or previously stored at name by the current user.

download(name) MAY raise IntegrityError or return None if under any attack
by the server or other users. download(name) MUST NOT raise any other errors.

It SHOULD raise IntegrityError if the file has been tampered with. It SHOULD
return None if it appears that no value for name exists for the user.

Property 2 upload(name, value) MUST place the value value at name so that
future downloads for name return value.

This function SHOULD return True. It MAY return False if the upload fails due to
a malicious server.

Any person other than the owner of name MUST NOT be able to learn even partial
information about value or name with probability better than random guesses.

You may assume file names are alphanumeric (they match the regex [A-Za-z0-9]+).
File names will not be empty. This will be the case for all parts of this project. The
contents of the file can be arbitrary: you must not make any assumptions there,
but they are provided as Python Unicode strings (for easier debugging). You may
assume usernames consist solely of lower-case letters ([a-z]+).

The autograder does not look at the return value of the upload method.

You do not need to implement any capabilities for sharing files between users (this is
Part 2). We have provided an implementation of the storage server—do not change it.

Project 2 Page 5 of 18 CS 161 – SP 17

https://www.ietf.org/rfc/rfc2119.txt


Note that we require you to protect the confidentiality and integrity of both the contents
of the file you store and the name it is stored under. A malicious storage server must
not be able to learn either, or change them. The length of the file and the length of the
filename don’t need to be kept confidential.

When used in a non-adversarial manner, different users should be allowed to have files
with the same name: they should not overwrite each other’s files. An adversary may
be able to overwrite a user’s valid data, but any changes should be reported as an
IntegrityError.

While integrity is an intuitively simple property (a user should only accept data they
themselves uploaded at that key), confidentiality has finer points which may not be
obvious at first. Your scheme should be secure even if the adversary can convince a
valid user to encrypt (or decrypt) arbitrary data. (The adversary controls the server.
Moreover, they can trick you into encrypting arbitrary data for them.) Your client is
secure if it satisfies the following scenario:

1. The adversary, who controls the server, constructs two files F0 and F1 of its choice,
with F0 = (name0, value0), F1 = (name1, value1), where name0 and name1 have
the same length, and value0 and value1 have the same length.

2. The adversary sends F0 and F1 to the client, who must choose one of them at
random and upload it.

3. The adversary then sends the client any number of Fi = (namei, valuei) of its
choice, where the only restriction is namei may not be name0 or name1. The client
must upload these.

4. The client provides confidentiality of names and values if, after all this, the ad-
versary cannot tell (with probability > 1/2) whether the client uploaded F0 or
F1.

One specific attack you are not required to handle is that of a rollback attack:
if Alice uploads the file F to the server and then updates it later to F ′ with a second
upload, Alice does not need to detect if the server “rolls back” its state and returns F
when Alice requests the file back. This is why Property 1 is written as it is.

Why do we not require this? Without additional state, it would be impossible. The
server could always rollback to the “empty” state where it contains no data at all, and
return None for every get, and the client would not be able to detect this.

Your client must not assume it can keep any state other than its RSA key pair. You must
assume that your client can be killed and restarted, and everything should still work.
(For example: you cannot place a dictionary in your client, make upload insert into the
dictionary, make download get from the dictionary, and claim to be secure because you
send nothing to the StorageServer.)

Note: this means if you require temporary symmetric keys, you will need to be able to
save and restore them using only the one persistent asymmetric key each client is given.

Project 2 Page 6 of 18 CS 161 – SP 17



You do not need to handle the case where two users interact with the server concurrently :
you can assume only one user will interact with the server at any point in time. (That
is, you do not need to worry about implementing locking—if one user has issued an API
call, then no other user does so until that API call completes.)

Testing your submission: We have a set of tests which we will run on your code,
for both functionality and security. In the provided framework, a file called
run part1 tests.py contains all the functionality tests we will run on your code, but
only 1 security test. (We have many more security tests!) To run these tests, run python3

run part1 tests.py. This will use your Client implementation from client.py. It
will output Pass/Fail for each test we have and a one-sentence explanation of what the
test does if it fails.2

We will not have any significantly new tests for functionality. If we add any new tests
to the framework, we will announce this and release an updated set.

These tests are provided to make sure that anyone who attempts the project will get
full points on functionality. This project is to test your ability to write secure code, not
to implement a key-value store.

There will be no performance tests for Part 1 (although your code should definitely
terminate!). Each test must complete in under one minute, but we expect tests to run
in a few seconds.

Submission and Grading

You should submit your final version of client.py file (and only that file) by March 15,
2017, 11:59PM using glookup with submit proj2-part1.

Every time you submit your project, we will email you a report of your functionality test
score and any crashes in your code. You are responsible for verifying that your
code runs against the autograder.

We plan to grade Part 1 shortly after the deadline. We will grade your last submission,
and provide:

• the raw score based on functionality tests (almost identical to those you already
have)

• the raw score based on a large set of security tests

• a one sentence summary of any security tests failed (so you have the chance to fix
these issues for Part 2 and Part 3)

2We will make minor modifications to the functionality tests before we run them (e.g., by changing the
names of keys and values) to ensure that solutions are not hard-coded to pass our tests.

Project 2 Page 7 of 18 CS 161 – SP 17



Your final score on this part of the project will be the minimum of the functionality
score and security score. Each failed security test will lower the security score, weighted
by the impact of the vulnerability.

We will not accept re-grade requests on the autograder results, except in cases where
there was a bug in the autograder. If you feel this has occurred, please post a private
question on Piazza to instructors and we will look at your code.

Submission Summary

In summary, you must submit the following directory tree for Part 1:

client.py

Project 2 Page 8 of 18 CS 161 – SP 17



Part 2: Sharing and revocation

Make sure you read instructions for Part 2 fully before starting. It is likely that the
design of your system for Part 2 will be significantly different from your previous solution.
A similar thing might happen for Part 3 as well, so you may choose to read Part 3 before
starting Part 2, and try to design your solution for both parts together.

Part 2 is due on April 7, 2017, at 11:59PM.

Question 2 Sharing (25 points)
A file store becomes much more interesting when you can use it to share files with
your collaborators. Implement the sharing functionality by implementing the methods
share() and receive share().

When Alice wants to share a file with Bob, she will call msg = alice.share("bob",

filename) to obtain a sharing message. Alice will then pass Bob msg through an out-
of-band channel (e.g., via email). You must not assume that this channel is secure. A
man-in-the-middle might receive or modify the sharing message after Alice sends it but
before Bob receives it.

After Alice passes msg to Bob, if Bob wishes to accept the file, he will call
bob.receive share("alice", newfilename, msg).3 Bob should now be able to ac-
cess Alice’s file under the name newfilename. In other words, Alice accesses the file
under the name filename; Bob accesses it using the name newfilename.

msg must be a Python string. During grading, we will pass msg from one client to another
on your behalf. Sharing a document must not require any other communication between
the clients.

Property 3 (Sharing) After m = a.share("b", n1); b.receive share("a",

n2, m), user b MUST now have access to file n1 under the name n2. Every user
with whom this file has been shared (including the owner) MUST see any updates
made to this file immediately. To user b, it MUST be as if this file was created by
them: they MUST be able to read, modify, or re-share this file.

This also changes Property 1 and Property 2 from above. A download() operation
MUST return the last value written by anyone with access to the file (the owner, or
anyone with whom the file was shared). Only those with access to the file should be
able to read or modify it.

Sharing is tricky. Note that both filenames refer to the same underlying file, and any
updates performed by anyone who has access to the file should be immediately visible to
all other users with access to the file. By “update”, we are referring to the case where a

3Bob populates the first two arguments himself after he receives what he believes is a valid msg from
Alice. Consequently, these two arguments cannot be tampered with by the man-in-the-middle attacker.

Project 2 Page 9 of 18 CS 161 – SP 17



user invokes upload(f, v2) on a file f that was previously uploaded and whose previous
contents were v1.

Sharing should be transitive. If Alice shares a file with Bob who shares it with Carol,
any changes to this file by any of the three should be visible to all three immediately.
Sharing a file with someone who has already received it results in unspecified behavior
(you may do whatever you choose). It is okay if the storage server learns which other
users you have shared a file with.

We require a minimal amount of efficiency: assuming a file (of size m) is shared with n
users, and Alice shares the file with a new user, you may perform a linear (in O(n+m))
number of either public or private key encryption operations. This is simple to achieve:
any reasonable scheme should be at least this efficient. It is possible to do significantly
better—and you are free to do so if you choose—but we will not evaluate you on this.4

Your client may only keep state for performance reasons. Your implementation must
work if your client is restarted in between every operation. Any state maintained on
your client must be able to be reconstructed from data that exists on the server. Your
clients may not directly communicate with each other.

Again, you do not need to worry about rollback attacks with sharing. For example, the
server could rollback state and remove a client from receiving updates. You do not have
to mitigate this. But remember, if you do notice any discrepancy during operation, you
should throw an IntegrityError.

Grading: The security tests for this question differ significantly from the previous
tests. You must ensure you respect all sharing requirements, and that only valid users
are able to read or edit a file. We will also test all functionality aspects, including all
the tests from Part 1.

If your implementation relies on more out-of-band messages than a single return value
from share(), you will get no credit for this question (or Question 3).

Question 3 Revocation (25 points)
Remote collaboration is a difficult thing, and, unfortunately, one of your collaborators
has betrayed you, and you can no longer trust them. You realize that you need to revoke
their access to your files.

Implement the revoke() method, which allows a user to revoke someone else’s access
to a given file. You can’t stop them from remembering whatever they’ve already
learned or keeping a copy of anything they’ve previously downloaded, but you can
stop them from learning any new information about updates to this file. Only the
user who initially created the file may call revoke().

4 Note that while you do not need to worry about the performance of sharing here, in Part 3 you will
be required to augment your design to make updates efficient (in terms of the number of bytes transferred
across the network).

Project 2 Page 10 of 18 CS 161 – SP 17



Property 4 (Revocation) If the original creator of the underlying file calls
revoke(otheruser, name), then afterwards otheruser MUST NOT be able to ob-
serve new updates to name, and anyone with whom otheruser shared this file MUST
also be revoked. Except for knowing the previous contents of name, to otheruser,
it MUST be as if they never had received the file.

This single property has several hidden implications which may not be clear right away.
Suppose that in the past, Alice granted Bob access to file F , and now Alice revokes
Bob’s access. Then we want all the following to be true subsequently:

1. Bob should not be able to update F ,

2. Bob should not be able to read the updated contents of F (for any updates that
happen after Bob’s access was revoked), and

3. If Bob shared the file with Carol, Carol should also not be able to read or update
F .

4. Bob should not be able to regain access to F by calling receive share() with
Alice’s previous msg.

Revocation must not require any communication between clients.

You only need to implement functionality to revoke access from direct children. If Alice
shares a file with Bob, and Bob shares the file with Carol, you are not required to provide
a way for Alice to directly revoke Carol’s access. It must work for Alice to revoke Bob’s
access, and revoking Bob’s access should recursively revoke Carol’s access.

If Alice shares a file with Bob, and Bob shares the file with Carol, you don’t need to
provide a way for Bob to revoke Carol’s access. We will not test this situation: you only
need to ensure that the original creator of the file can revoke others.

If Alice shares a file with Bob, and then revokes Bob’s access, it may still be possible
(depending on the design of your system) for Bob to mount a denial of service (DoS)
attack on Alice’s file (for example, by overwriting it with all 0s, or deleting ids), but
Alice should never accept any changes Bob makes as valid. She should always either
raise an IntegrityError, or return None (if Bob deleted her files).

Similar to Question 2, we will not grade you on efficiency. You may make a linear
number of operations proportional to the size of the file, and the number of users who
have received this file.

All the requirements from the previous parts are carried over to this part. Recall that
the only state which you can keep in the client is your public and private key. Any other
state stored must be only an optimization: it must be recoverable from state stored on
the server.

As before, you do not need to worry about rollback attacks with revocation. For example,
the server may rollback state and remove a client from receiving updates, or re-share

Project 2 Page 11 of 18 CS 161 – SP 17



with an old client. You do not have to mitigate this. But if you do notice any discrepancy
during operation, you should throw an IntegrityError.

Grading: It will be very difficult for you to receive any credit on this part if your im-
plementation does not pass the functionality and security tests from Question 2. Since,
in this case, functionality and security are tightly bound (revocation is a security behav-
ior), we will not be providing you with difficult functionality tests. We have provided
you with trivial tests, but you should definitely implement your own (although we will
not ask for your tests). After submission, our autograder will apply some more difficult
tests.

Question 4 Design Document for Part 2 (15 points)
Write a clear, concise design document to go along with your code. Your design document
should be split into two sections. The first contains the design of your system, and the
choices you made; the second contains an analysis of its security. Your design document
should explain your complete solution, for Questions 1 through 3.

In the first section, summarize the design of your system. Explain the major design
choices you made, including how data is stored on the server. The design should be
written in a manner such that an average 161 student could take it, re-implement your
client, and achieve a grade similar to yours. A well-written design receiving full points
need not be longer than two pages. You will lose points if your design is excessively
verbose.5

The second part of your design document is a security analysis. Present at least three
concrete attacks that you have come up with (which were not released with the Part 1
autograder) and how your design protects against each attack. You should not need more
than one paragraph to explain how your implementation defends against each attack you
present.

You may use as reference the Part 1 design document we provided to you for our reference
solution. This is a design document which would receive full credit if we were grading it
on Part 1 alone.

Grading: The design document is worth 15 points, split roughly equally between the
two sections.

The first section is graded on your ability to explain your design to the reader effectively.
Be sure to include the following in the document:

• For Q2, what state is stored on the server to allow for sharing, as well as the contents
of the sharing message.

• For Q3, what state is changed to revoke a file, and how you meet all the revocation
requirements.

5 If after writing your design document, you realize you have a 10-page document with 100 lines of code
and think to yourself “My 162 GSI would be proud of this,” you will be disappointed in your grade. That
is not a design document. That is an implementation with comments.

Project 2 Page 12 of 18 CS 161 – SP 17



The second section is graded on the attacks and defenses you present. You should
have at least three attacks and corresponding defenses to get full points. If you give
more attacks, we will grade your best three (we will grade them in order, so place your
strongest attacks first to make it easier for the readers, so they can stop after finding
three that suffice for full credit). Do not give more than 10.

Submission and Grading

For Part 2, you should submit your final version of client.py with all of the functionality
for Questions 1–3 by April 7, 2017, 11:59PM using glookup with submit proj2-part2. You
will also submit your design document as design.pdf.

As in Part 1, we provide a set of functionality tests for Part 2, in run part2 tests.py. You
should also make sure that you still pass all the autograder tests we gave you for Part 1.

You can submit your project multiple times. For each submission you will receive an email
with your autograder results for functionality tests. As before, we will grade your latest
submission.

As in part 1, your score on Questions 2–3 will be based on all functionality and security
tests from Parts 1 and 2. Your final score for these questions will be the minimum of your
functionality and security scores.

We will not accept re-grade requests on the autograder results, except in cases where there
was a bug in the autograder. If you feel this has occurred, please post a private question on
Piazza to instructors and we will look at your code.

Submission Summary

In summary, you must submit the following directory tree for Part 2:

client.py

design.pdf

Project 2 Page 13 of 18 CS 161 – SP 17



Part 3: Efficient Updates

Make sure you read instructions for Part 3 fully before starting. It is possible that
the design of your system for Part 3 will be significantly different from your solution for the
previous parts. However, your system must continue to support all of the functionality from
Parts 1 and 2.

Part 3 is due on April 17, 2017, at 11:59PM.

Question 5 Efficient Updates (25 points)
Design and implement a solution for efficiently updating files that are already stored on
the server. For this question, you must efficiently handle very large files—potentially
multiple gigabytes long. This makes maintaining confidentiality and integrity more dif-
ficult. Be aware that when the server is malicious, it can perform arbitrary actions at
arbitrary points in time during your execution. For example, you cannot assume that
two consecutive calls to server.get(f) will return the same value.

The requirements are exactly the same as Part 1 and Part 2, except that now we want
your solution to be efficient when making a small update to a large file.

By efficiency, we are referring to the amount of data that must be transferred over the
network connection to the storage server. By “update”, we are referring (as before) to
the case where the user invokes upload(f, v2) on a file f that was previously uploaded
and whose previous contents were v1. Your solution only needs to be efficient for updates
that replace the file with another file of the same length. You should efficiently handle
changes anywhere in the file, from a few bytes to the whole file. (Other kinds of updates,
e.g., those that insert data somewhere or delete data somewhere, do not have to be
especially efficient.)

Your client may store state (including, for example, the previous version of a file). But,
this must only be an optimization: your client must still work correctly if it loses all of
its state except for its public and private key. If your client loses all of its state, we do
not require that it still performs efficient updates; but it must still behave correctly.

If you store state, be careful to validate that your state is current. For example, suppose
Alice uploads a file with some value, and saves a copy of the file locally. She then shares
it with Bob, who updates the file’s value. If Alice subsequently wants to update the
value on the server, her client must make sure to override Bob’s changes (if required) so
that the final value on the server is the same as what Alice intends it to be, instead of
simply uploading the parts that differ from her local copy. You should be able to still
perform efficient updates correctly if other users make updates to different parts of the
file.

Keep state in memory—you do not need to worry about serialization to disk. Let S be
the total number of bytes of data a client has saved on the server. As long as you keep
only O(S) bytes of data in the client, we guarantee our autograder tests will not cause

Project 2 Page 14 of 18 CS 161 – SP 17



your program to run out of memory.6

Grading: In run part3 tests.py we have provided you with a server that counts the
total number of bytes you send and receive across the network. We have provided four
performance test cases alongside functionality tests for Part 3.

One of performance tests tests algorithmic performance for single-byte updates when
not changing the size of the file. You should strive to update in logarithmic size, i.e., the
number of bytes transferred on a single-byte update should be logarithmic in the size of
the file. However, we will not use this test for grading.

The other three performance tests report the number of bytes transferred and a score
based on example thresholds. We will use these three tests for grading the perfor-
mance of your system. As a guideline, for an efficient implementation, a reasonable
amount of data transferred for test z01 SimplePerformanceTest is ∼10 KB, and for
z03 SharingPerformanceTest is ∼100 KB.

You should not worry about O(1) constants in updates until after your code is algorith-
mically faster (for example, do not worry about keys being hex encoded, or using JSON).
These constants award a few points, but much less than the algorithmic portion.

Our autograder will also run additional security tests on your system, as in the previous
parts.

Question 6 Design Document for Part 3 (10 points)
Write a clear, concise design document to go along with your code. The design document
should have only one section, explaining your final and complete solution for Questions 1
through 5.

Write the design document in the same manner as you wrote the first section of the design
document for Part 2, such that an average 161 student could take it, re-implement your
client, and achieve a grade similar to yours for all Questions 1 through 5.

If your design has not changed from Part 2, you may reuse the first section of your
design document from Part 2, but you must submit a new design document per these
instructions.

Grading: The design document is worth 10 points. The design document is graded on
your ability to explain your design to the reader effectively. Be sure to include (a) how
you perform efficient updates, and (b) a short performance analysis.

6 We introduce this requirement solely for your benefit, so you don’t have to worry about memory
management. In practice, it would be bad to assume that all of the bytes fit in memory, since very likely it
would be possible to store many more bytes on the server than you have room for on your client.

Project 2 Page 15 of 18 CS 161 – SP 17



Submission and Grading

For Part 3, you should submit your final version of client.py with all of the functionality
for Questions 1–3 by April 17, 2017, 11:59PM using glookup with submit proj2-part3.
You will also submit your design document as design.pdf, plus optional feedback.

You should also make sure that you still pass all the autograder tests we gave you for Part 1
and Part 2.

You can submit your project multiple times. For each submission you will receive an email
with your autograder results for functionality tests. As before, we will grade your latest
submission.

As in previous parts, your score on Question 5 will be based on the performance of your
implementation as well as all functionality and security tests from Parts 1, 2, and 3. Your
final score for this question will be the minimum of your performance, functionality, and
security scores.

Submission Summary

In summary, you must submit the following directory tree for Part 3:

client.py

design.pdf

feedback.txt (optional)

Project 2 Page 16 of 18 CS 161 – SP 17



Errata

1. Stylistic change to Property 1 (Attack Setting).

2. The framework has been updated to contain functionality tests for Part 3 in addition
to the performance tests. We moved some functionality tests from Part 2 to Part 3.

3. Page 14 now contains a better example of potential pitfalls during the maintenance of
local state for Part 3.

Appendix

Reference Implementation

We have written an inefficient, insecure implementation of a client. We have provided this to
you in insecure client.py. This code is also an example of how to extend the BaseClient

class. This implementation provides all the functionality requirements of this project, but
has no security properties at all.7

This client gives each user their own “namespace” within the master server by concatenating
the username, a slash, and then the filename and using that as the id for the storage server.

The client works by maintaining two types of objects on the server storage: pointers and
data. A data object has the contents of a file. A pointer acts as a reference to the file. (If
you’ve taken operating systems, you can think of pointers as symlinks.) When a user updates
a file that is a pointer, she follows the pointers until a data file is reached, and then updates
the corresponding data file. Sharing works by providing the other user with a pointer to
the file, and revocation removes the pointer. This satisfies the revocation properties that
sub-children are also revoked.

Example Workflow

An example workflow for developing on your personal machine is as follows:

• Copy the framework code into a folder named project2.

• Sync changes to your class account using scp:

scp -r project2/ cs161-xxx@hiveXX.cs.berkeley.edu:~/project2

This will copy the project2 folder and its contents to your home directory.

7While insecure client.py will pass all functionality tests, it does not satisfy any of the security
requirements, so submitting it will earn you a score of 0 on the project. As detailed in each part’s “Submission
and Grading” section, your score is the minimum of your security, functionality, and (in part 3) performance
scores, so a security/performance score of 0 will earn you 0.

Project 2 Page 17 of 18 CS 161 – SP 17



• SSH into a Hive machine with your class account.

• Do all Python console work using python3 or ipython3 in your SSH session.

• Run all Python code using python3, e.g. python3 client.py.

You can also do all of this while seated at a machine in the instructional labs, or inside an
SSH session using vim or emacs.

While not officially supported by course staff, it is also possible to set up Python3 and
install PyCrypto on your own machine. You should double check your code by re-running
the functionality tests against your code on Hive. Remember to follow all the steps in
the submission instructions for each part of this project!

Project 2 Page 18 of 18 CS 161 – SP 17


	Introduction
	Getting Started
	Secure File Store
	Part 1
	Q1: Simple Upload/Download
	Part 2
	Q2: Sharing
	Q3: Revocation
	Q4: Design Document
	Submission and Grading
	Part 3
	Q5: Efficient Updates
	Q6: Design Document
	Submission and Grading
	Errata
	Appendix
	Reference Implementation
	Example workflow


