
Paxson
Spring 2017

CS 161
Computer Security Discussion 12

Week of April 24, 2017

Question 1 Detection strategies (20 min)
Suppose you are responsible for detecting attacks on the UC Berkeley network, and can
employ host-based monitoring (a HIDS) that can inspect the keystrokes that users enter
during their shell sessions. One particular attack you are concerned with is malicious
modification or deletion of files in the directory /usr/oski/config/.

(a) One method of detection is called “signature matching.” This involves looking
for particular well-defined patterns in traffic that are known to represent malicious
activity. Give a couple of examples of signatures you can use to detect these attacks.
What are some limitations of this approach?

Solution: Example signatures:

1. Look for the string “/usr/oski/config/” in requests

2. Look for “rm -rf”

3. Wait until a particular attack occurs. Afterwards, look for the same pack-
ets as occurred during that attack.

Problems with this approach:

1. It is prone to false positives, as it lacks context. It could be that access
to /usr/oski/config occurs frequently for benign reasons, and without
ensuing modifications. Similarly, users might often use rm -rf to manip-
ulate directories other than the one you’re observing.

2. It can be prone to false negatives or evasion. For example, an attacker
could issue cd /usr/oski; cd config followed by rm -f -r . and easily
evade detection.

3. If you only create signatures based on known (= previously seen) attacks,
then the approach is purely reactive; if you’re looking for a threat unique
to your site, you cannot inoculate yourself from it until you have suf-
fered it. On the other hand, (1) if the threat is one faced by other sites,
they might have written signatures for it after having experienced it, and
(2) one can adapt signature technology to write vulnerability signatures
(signatures that match a known potential problem, rather than a known
specific attack), which can be proactive.

Page 1 of 5



(b) Another approach is to search for behaviors. Instead of looking for known attacks,
the detector might use knowledge of the system to look for suspicious sets of actions.
Give two examples of host-based behavioral detection. Be specific as to how your
examples differ from signature matching that looks for known attacks. What are
some problems with this approach?

Solution: Examples:

1. Look for changes to files in /usr/oski/config/ after multiple attempts
at logging in as “root”. Here, rather than looking for a specific attack
we’re looking for a pattern associated with likely-attack activity.

2. Don’t even look for attacks; look for related suspicious activity indicative
of a compromise. For example, look for login sessions that immediately
issue rm commands, based on knowledge that benign users don’t start
off their sessions by removing files, but those who want to mess with
Oski very well might. This approach can potentially detect a wide range
of compromises for which the attacker obtains login access to the target
system.

Issues:

1. Relies on the assumption that benign users will very rarely exhibit the
behavior we key off of.

2. While potentially more general than signature matching, can still miss
a wide range of attacks that don’t happen to include (or for which the
attacker consciously avoids including) the behavior for which we monitor.

(c) Suppose now we aim to detect modifications to any files in /usr/oski/config/

using the following procedure. Each night, we run a cron job that checksums all
of the files in the directory using a cryptographically strong hash like SHA256.
We then compare the hashes against the previously stored ones and alert on any
differences. (This scheme is known as “Tripwire.”)

Discuss issues with false positives and false negatives.

Solution: False positives can occur any time that the files are changed for a
legitimate purpose.

Given a single change to a file, false negatives should not be a direct problem:
due to the properties of a hash function like SHA256, if an attacker makes any
modification to a file, the hash will change; they will not be able to find any
alternative value for the file that yields the same hash.

However, if the attacker gains administrative privileges then they could modify
the OS to return the old content of the file whenever the nightly job runs; or

Discussion 12 Page 2 of 5 CS 161 – SP 17



modify the nightly job directly to always report nothing has changed; or modify
the stored hashes to reflect the new content of the file.

In addition, if the attacker makes a change to the file to their benefit, but then
changes the file back prior to the run of the nightly job, then they will escape
detection (false negative).

(d) Continuing the previous scenario, suppose the attacker was able to subvert the
operating system. Can you think of a procedure (which might be expensive in
terms of labor) by which an operator could still detect the modified files?

Solution: Here’s one approach that has been used in practice. The hashes
aren’t stored locally but instead on a remote system (which prevents the at-
tacker from tampering with them). When the operator wants to check a file
system, they shut down the suspect machine and remove the disk, mounting it
on a separate system (with a presumably trustworthy OS) for comparison. Al-
ternatively, the operator could insert a boot disk into the suspect machine and
boot off of read-only media (assuming the attacker cannot alter the low-level
boot sequence) and use that alternative OS for the validation procedure.

Another approach used in practice is for the security analyst to copy a self-
contained environment providing key system diagnosis tools over to the com-
promised system. This is unsound if the modified OS detects its presence and
subverts its operation, but often can provide benefit in practice because the
subverted kernel in fact does not particularly look for it; the approach hinges
on the assumption that “rootkits” exclusively mess with the installed toolchain
and do not bother with such custom environments. The busybox environment,
for example, provides numerous tools that replace classic targets for subversion,
such as ls, ps, find, grep, mount, ifconfig, and many more.

Question 2 Detecting Web Attacks (15 min)
At this year’s annual Grasses For The Masses home & garden convention, in beautiful
Fairfax California, the startup Lazer Lawns—which specializes in producing so-juicy-
looking-you-just-wanna-eat-it artificial turf—experienced a live SQL injection attack
from the audience while showcasing their new high-end collection of silver-ionized heat-
repellent blades—what a disaster! After firing the organizer of the event and hiring a
CS161-educated security expert, Grasses For The Masses now plans to install a NIDS
that watches the free WiFi next year. Moreover, Lazer Lawns has learned the hard way
to make sure they have a HIDS1 protecting their assets.

As a potential advisor to either Grasses For The Masses or Lazer Lawns, consider the some

1 Given they have to demo their software in many different environments, they’ve learned that they
shouldn’t rely on being able to employ a NIDS, hence their emphasis on using a HIDS.

Discussion 12 Page 3 of 5 CS 161 – SP 17



prevalent web attacks: XSS (both reflected and stored) and SQL injection.

(a) For each attack, devise one or more concrete strategies based on signature, be-
havioral, anomaly, or specification-based detection. Include a discussion of false
positives and false negatives.

Solution: XSS. In order to detect reflected XSS, one can look for <script>

tags in the URL of HTTP GET requests. Since there exist a multitude of dif-
ferent encodings and syntactic variations (as well as other contexts in which a
reply will be interpreted as JavaScript), this signature-based scheme is particu-
larly vulnerable to evasion and may exhibit a high number of false negatives.

In principle, one could detect stored XSS by inspecting the body of HTTP
POST requests for script content (that is, detect the injected script when it
is uploaded, rather than when the server subsequently sends it to the victim).
Again, one might scan for <script> tags, with the same considerations as above
likewise applying.

Also in principle one can detect reflected XSS by looking for substrings in HTTP
requests that reappear in HTTP replies. This approach however may have
significant false positives, depending on the structure of the web service.

SQL injection. One might consider employing specification-based detection,
where the specification requires only a constrained set of characters (which do
not include any SQL meta-characters) from appearing in requests that the server
receives. The effectiveness of this approach will depend on whether the specifi-
cation is viable, i.e., doesn’t rule out any legitimate traffic that the server needs
to support. It also depends on the ability to correctly identify the constrained
set and whether it indeed suffices to prevent an attacker from constructing a
successful SQL injection.

(b) Explain whether a network-based or host-based deployment approach makes more
sense for your devised detection strategy (or if it doesn’t really matter). Does the
deployment angle have an effect on your detection rates?

Solution: In each attack scenario, if Lazer Lawns employs HTTPS it makes
more sense to deploy as a HIDS because the NIDS at Grasses For The Masses
will not have the private key to decrypt and inspect the HTTP traffic.

In addition, a HIDS will not face as many issues regarding evasion threats
as a NIDS, because it analyzes information right at the potential victim. In
some cases, a HIDS can leverage a richer understanding of the application data.
For example, a database could parse an SQL query and provide the resulting
Abstract Syntax Tree (AST) to a detection module that determines whether
continuing is safe. This approach also has the advantage of avoiding ambiguities

Discussion 12 Page 4 of 5 CS 161 – SP 17



at the network level, such as the retransmission-based evasion we looked at in
lecture.

Question 3 Detection Tradeoffs (15 min)
Suppose that S is a network-based intrusion detector that works by passively analyzing
individual UDP and TCP packets. Suppose that A is a host-based intrusion detector
that is a component of the browser that processes and analyzes individual URLs before
they are loaded by the browser. Suppose S has false positive rate SP and false negative
rate SN , and A has false positive rate AP and false negative rate AN .

Your company decides to build a hybrid scheme for detecting malicious URLs. The
hybrid scheme works by combining scheme S and scheme A, running both in parallel
on the same traffic. The combination could be done in one of two ways. Scheme HE

would generate an alert if for a given network connection either scheme S or scheme A
generates an alert. Scheme HB would generate an alert if both scheme S and scheme A
generate an alert for the same connection. (Assume that there is only one URL in each
network connection.)

(a) Assuming that decisions made by S and A are well-modeled as independent pro-
cesses, and ignoring any concerns regarding evasion, what can you say about the
false positives and false negatives of HB and HE? In terms of SP , SN , AP , AN , what
are the false positive and false negative rates for HB and HE?

(b) If deploying the hybrid scheme in a new environment, is one of HE and HB clearly
better? If so, which one, and why? If not, what environment parameters would
help determine whether HE or HB is better?

Solution:

(a) The key insight here is that alarms by HB will be a subset of the alarms gener-
ated by HE. Since HB will generate fewer alarms for non-malicious activities,
it will have less false positives. On the other hand, because it generates fewer
alarms, it will likely miss more malicious activity, leading to more false nega-
tives. The false positive rate for HE would be SP + AP − SPAP , and for HB

would be SPAP . Similarly, the false negative rate for HE would be SNAN and
for HB would be SN + AN − SNAN

(b) In the absence of more data, particularly the cost of false positives and false neg-
atives, as well as the rate of malicious and non-malicious activity, it is impossible
to make a definitive decision.

Increasing the cost of false positives, and the rate of non-malicious activity, fa-
vors scheme HB. Increasing the cost of false negatives, and the rate of malicious
activity, favors scheme HE.

Discussion 12 Page 5 of 5 CS 161 – SP 17


