P&XSOII CS 161

Spring 2017 Computer Security

Discussion 2

Question 1 Software Vulnerabilities (15 min)

O~ O U W

For the following code, assume an attacker can control the value of basket passed into
eval_basket. The value of n is constrained to correctly reflect the number of elements
in basket.

The code includes several security vulnerabilities. Circle three such vulnerabilities
in the code and briefly explain each of the three.

struct food {
char name[1024];
int calories;

s

/* FEvaluate a shopping basket with at most 32 food items.

Returns the number of low—calorie items, or —1 on a problem. */
int eval_basket (struct food basket[], size_-t n) {

struct food good[32];

char bad[1024], cmd[1024];

int i, total = 0, ngood = 0, size_bad = 0;

if (n > 32) return —1;

for (i = 0; i <= n; ++i) {
if (basket[i].calories < 100)

good [ngood++] = basket [i];
else if (basket[i].calories > 500) {
size_t len = strlen (basket[i].name);
snprintf(bad + size_bad, len, "%s ”, basket[i].name);
size_bad += len;
}
total 4+= basket[i]. calories;
}
if (total > 2500) {
const char xfmt = ”"health—factor —calories %d —bad—items %s”;
fprintf(stderr, "lots of calories!”);

snprintf(cmd, sizeof cmd, fmt, total, bad);
system (cmd) ;

}

return ngood;

Reminders:
e strlen calculates the length of a string, not including the terminating ‘\0’ character.

e snprintf(buf, len, fmt, ...) works like printf, but instead writes to buf, and
won’t write more than len - 1 characters. It terminates the characters written with

a ‘\0’.

e system runs the shell command given by its first argument.

Page 1 of 7

Solution: There are significant vulnerabilities at lines 15/17, 20, and 31.

Line 15 has a fencepost error: the conditional test should be ¢ < n rather than
t <= n. The test at line 13 assures that n doesn’t exceed 32, but if it’s equal to
32, and if all of the items in basket are “good”, then the assignment at line 17 will
write past the end of good, representing a buffer overflow vulnerability.

At line 20, there’s an error in that the length passed to snprintf is supposed to
be available space in the buffer (which would be sizeof bad - size_bad), but in-
stead it’s the length of the string being copied (along with a blank) into the buffer.
Therefore by supplying large names for items in basket, the attacker can write past
the end of bad at this point, again representing a buffer overflow vulnerability.

At line 31, a shell command is run based on the contents of cmd, which in turn
includes values from bad, which in turn is derived from input provided by the at-
tacker. That input could include shell command characters such as pipes (‘|) or
command separators (), facilitating command injection.

Some more minor issues concern the name strings in basket possibly not being
correctly terminated with "\(0's, which could lead to reading of memory outside of
basket at line 19 or line 20.

Note that there are no issues with format string vulnerabilities at any of lines 20,
29, or 30. For each of those, the format itself does not include any elements under
the control of the attacker.

Discussion 2 Page 2 of 7 CS 161 — SP 17

Question 2 Buffer Overflow Mitigations (20 min)
Buffer overflow mitigations generally fall into two categories: (1) eliminating the cause
and (2) alleviating the damage. This question is about techniques in the second category.

Several requirements must be met for a buffer overflow to succeed. Each requirement
listed below can be combated with a different countermeasure. With each mitigation
you discuss, think about where it can be implemented—common targets include the
compiler and the operating system (OS). Also discuss limitations, pitfalls, and costs of
each mitigation.

(a) The attacker needs to overwrite the return address on the stack to change the
control flow. Is it possible to prevent this from happening or at least detect when
it occurs?

(b) The overwritten return address must point to a valid instruction sequence. The at-
tacker often places the malicious code to execute in the vulnerable buffer. However,
the buffer address must be known to set up the jump target correctly. One way to
find out this address is to observe the program in a debugger. This works because
the address tends to be the same across multiple program runs. What could be done
to make it harder to accurately find out the address of the start of the malicious
code?

(c) Attackers often store their malicious code inside the same buffer that they overflow.
What mechanism could prevent the execution of the malicious code? What type of
code would break with this defense in place?

Solution:

(a) Stack Canaries. A canary or canary word is a known value placed between
the local variables and control data on the stack. Before reading the return
address, code inserted by the compiler checks the canary against the known
value. Since a successful buffer overflows needs to overwrite the canary before
reaching the return address, and the attacker cannot predict the canary value,
the canary validation will fail and stop execution prior to the jump.

As an example, consider the following function.

void wvuln()

{
char buf[32];
gets(buf);

Discussion 2 Page 3 of 7 CS 161 — SP 17

The compiler will take this function and generate:

/* This number is randomly set before each run. */
int MAGIC = rand();

void vuln()

{
int canary = MAGIC;
char buf[32];
gets (buf) ;
if (canary != MAGIC)
HALTQ) ;
+
Limitations.

e Canaries only protect against stack smashing attacks, not against heap
overflows or format string vulnerabilities.

e Local variables, such as function pointers and authentication flags, can still
be overwritten.

e No protection against buffer underflows. This can be problematic in com-
bination with the previous point.

e [f the attack occurs before the end of the function, the canary validation
does not even take place. This happens for example when an exception
handler on the stack gets invoked before the function returns.

e A canary generated from a low-entropy pool can be predictable. In 2011
research showed that the Windows canary implementation only relied on
1 bit of entropy.

Cost. The canary has to be validated on each function return. The performance
overhead is only a few percent since a canary is only needed in functions with
local arrays. To determine whether to use the canary, Windows additionally
applies heuristics (which unfortunately can also be subverted.)

Address Randomization. When the OS loader puts an executable into mem-
ory, it maps the different sections (text, data/BSS, heap, stack) to fixed memory
locations. In the mitigation technique called address space layout randomiza-
tion (ASLR), rather than deterministically allocating the process layout, the
OS randomizes the starting base of each section. This randomization makes
it more difficult for an attacker to predict the addresses of jump targets. For
instance, the OS might decide to start stack frames from somewhere other than
the highest memory address.

Discussion 2

Page 4 of 7 CS 161 — SP 17

Limitations.

e Entropy reduction attacks can significantly lower the efficacy of ASLR.
For example, reducing factors are page alignment requirements (stack: 16
bytes, heap: 4096 bytes).

e Address space information disclosure techniques can force applications to
leak known addresses (e.g., DLL addresses).

e Revealing addresses via brute-forcing can also be an effective technique
when an application does not terminate, e.g., when a block that catches
exceptions exists.

e Techniques known as heap spraying and JIT spraying allow an attacker to
inject code at predictable locations.

e Like the canary defense, ASLR also does not defend against local data
manipulation.

e Not all applications work properly with ASLR. In Windows, some opt out
via the /DYNAMICBAS linker flag.

Cost. The overhead incurred by ASLR is negligible.

(c) Executable Space Protection. Modern CPUs include a feature to mark
certain memory regions non-executable. AMD calls this feature the NX (no
execute) bit and Intel the XD (execute disable) bit. The idea is to combat
buffer overflows where the attacker injects their own code.

PaX pioneered this technique in 2000 with per-page non-executable page sup-
port, protecting binary data, the heap, and the stack. OpenBSD implented a
form of this called WX (write x-or execute) in 2003. Since Service Pack 2 in
2004, Windows features data execution prevention (DEP), an executable space
protection mechanism that uses the NX or XD bit to mark pages, which are
intended to only contain data, as non-executable.

Limitations.

e An attacker does not have to inject their own code. It is also possible to
leverage existing instruction sequences in memory and jump to them. See
part 3 for details.

e The defense mechanism disallows execution of code generated at runtime,
such as during JIT compilation or self-modifying code (SMC).

e If codeisloaded at predictable addresses, it is possible to turn non-executable
into executable code, e.g., via system functions like VirtualAlloc or
VirtualProtect on Windows.

Discussion 2 Page 5 of 7 CS 161 — SP 17

Cost. There is no measurable overhead due to the hardware support of modern
CPUs.

Question 3 Arc Injection

(15 min)
Imagine that you are trying to exploit a buffer overflow, but you notice that none of the
code you are injecting will execute for some reason. How frustrating! You still really
want to run some malicious code, so what could you try instead?

Hint: In a stack smashing attack, you can overwrite the return address with any address
of your choosing.

Solution: Rather than injection code, the main idea of arc injection is to inject
data. It is a powerful technique to that bypasses numerous protection mechanisms,
in particular executable space protection (2a:exec). By injecting malicious data that
existing instructions later operates on, an attacker can still manipulate the execution
path.

For example, an attacker can overwrite the return address with a function in libc,
such as system(const char* cmd) whose single argument cmd is the new program
to spawn. The attacker also has to setup the arguments (i.e., the data) appropri-
ately. Recall that function arguments are pushed in reverse order on the stack before
pushing the return address. Consider the example below, where an attacker over-

writes the return address with the address of system (denoted by &system) to spawn
a shell.

&"/bin/sh" &"/bin/sh"
dummy return addr «—esp
rip &system |«—esp
sfp
addin addin
buffer P g P g
S —————————— S —————————————— S ————————————

The first figure on the left is the stack layout before the attack. The second figure in
the middle represents the state after having overflowed the buffer. Here, the return
address is overwritten with &system. The value above is the location of the return
address, from the perspective of system’s stack frame. But since the attacker plans
on spawning a shell that blocks to take evil commands (e.g., rm -rf /), this value
will never be used — hence any dummy value will suffice. The argument to system
is the address of attacker-supplied data, in this case a pointer to the string /bin/sh.
Finally, the third figure displays the stack state after transferring control to system,
which happened by popping &system into the program counter (and decrementing
the stack pointer). At this point, the attacker can execute commands using the shell.

Discussion 2 Page 6 of 7 CS 161 — SP 17

A more sophisticated version of arc injection is called return-oriented programming
(ROP). It is based on the observations that the virtual memory space (which has
the C library) offers many little code snippets, gadgets, that can be parsed as a
valid sequence of instructions and end with a ret instruction. Recall that the ret
instruction is equivalent to popl %eip, i.e., it writes the top of the stack into the
program counter. The attacker does not even have to jump to the start of a function,
any arbitrary location in the middle works as long as it terminates with a ret.

Shacham et al. showed that these small gadgets can be combined to perform arbitrary
computation. In our above example, a basic combination of two gadgets would
involve writing the starting address of the next gadget at the value of dummy. When
the first gadget finishes, the next one is loaded by executing ret.

Setting up the stack is very tricky to get right manually, but the paper referenced
above actually wrote a compiler to transform code from a language as expressive as
C-like into mixture of gadgets to be pushed on the stack!

A final note: do not hesitate to ask for help! Our office hours exist to help you. Please
visit us if you have any questions or doubts about the material.

Discussion 2 Page 7 of 7 CS 161 — SP 17

