
Network Attacks, Con’t 

CS 161: Computer Security 
Prof. Vern Paxson 

 
TAs: Paul Bramsen, Apoorva Dornadula, 

David Fifield, Mia Gil Epner, David Hahn, Warren He, 
Grant Ho, Frank Li, Nathan Malkin, Mitar Milutinovic, 

Rishabh Poddar, Rebecca Portnoff, Nate Wang 

http://inst.eecs.berkeley.edu/~cs161/ 
March 14, 2017 



The	Transport	Layer:	TCP	



“Best Effort” is Lame!  What to do?
•  It’s the job of our Transport (layer 4) protocols to 

build data delivery services that our apps need out 
of IP’s modest layer-3 service 



Layer 4: Transport Layer

Application 

Transport 

(Inter)Network 

Link 

Physical 

7 

4 

3 

2 

1 

End-to-end communication 
between processes 
 
Different services provided: 
  TCP = reliable byte stream 
  UDP = unreliable datagrams 

(Datagram = single packet message) 



“Best Effort” is Lame!  What to do?
•  It’s the job of our Transport (layer 4) protocols to 

build data delivery services that our apps need out 
of IP’s modest layer-3 service 

• #1 workhorse: TCP (Transmission Control Protocol) 

• Service provided by TCP: 
– Connection oriented (explicit set-up / tear-down) 

o  End hosts (processes) can have multiple concurrent long-lived 
communication 

– Reliable, in-order, byte-stream delivery 
o  Robust detection & retransmission of lost data 



TCP “Bytestream” Service

B
yte 0 

B
yte 1 

B
yte 2 

B
yte 3 

B
yte 0 

B
yte 1 

B
yte 2 

B
yte 3 

Process A on host H1 

Process B 
on host H2 

B
yte 80 

B
yte 80 

Processes don’t ever see packet boundaries, 
lost or corrupted packets, retransmissions, etc.  



Bidirectional communication:

B
yte 0 

B
yte 1 

B
yte 2 

B
yte 3 

B
yte 0 

B
yte 1 

B
yte 2 

B
yte 3 

Process B on host H2 

Process A 
on host H1 

B
yte 73 

B
yte 73 

There are two separate bytestreams, one in 
each direction 



TCP Header

Source port Destination port 

Sequence number 

Acknowledgment 

Advertised window HdrLen Flags 0 

Checksum Urgent pointer 

Options (variable) 

Data … 

(IP Header) 

(Link Layer Header) 



TCP Header

Ports are 
associated 
with OS 
processes 

Source port Destination port 

Sequence number 

Acknowledgment 

Advertised window HdrLen Flags 0 

Checksum Urgent pointer 

Options (variable) 

Data … 

(IP Header) 

(Link Layer Header) 



TCP Header

Ports are 
associated 
with OS 
processes 

IP source & destination 
addresses plus TCP 
source and destination 
ports uniquely identifies 
a (bidirectional) TCP 
connection 

Source port Destination port 

Sequence number 

Acknowledgment 

Advertised window HdrLen Flags 0 

Checksum Urgent pointer 

Options (variable) 

Data … 

(IP Header) 

(Link Layer Header) 



gateway	

resolver	
router	

172.217.6.78	

The Rest of
the Internet

4.	Connect	to	google.com	server	

216.97.19.132	

Suppose our browser used port 23144 for our 
connection, and Google’s server used 443. 
  

Then our connection will be fully specified by the single 
tuple <216.97.19.132, 23144, 172.217.6.78, 443> 



TCP Header

Ports are 
associated 
with OS 
processes 

IP source & destination 
addresses plus TCP 
source and destination 
ports uniquely identifies 
a (bidirectional) TCP 
connection 

Source port Destination port 

Sequence number 

Acknowledgment 

Advertised window HdrLen Flags 0 

Checksum Urgent pointer 

Options (variable) 

Data … 
Some port numbers are 
“well known” 
e.g. port 443 = HTTPS 



TCP Header

Starting 
sequence 
number (byte 
offset) of data 
carried in this 
“segment” 

Source port Destination port 

Sequence number 

Acknowledgment 

Advertised window HdrLen Flags 0 

Checksum Urgent pointer 

Options (variable) 

Data … 



TCP Header

Starting 
sequence 
number (byte 
offset) of data 
carried in this 
“segment” 

Source port Destination port 

Sequence number 

Acknowledgment 

Advertised window HdrLen Flags 0 

Checksum Urgent pointer 

Options (variable) 

Data … 

Byte streams 
numbered 
independently in 
each direction 



TCP Header

Starting 
sequence 
number (byte 
offset) of data 
carried in this 
“segment” 

Source port Destination port 

Sequence number 

Acknowledgment 

Advertised window HdrLen Flags 0 

Checksum Urgent pointer 

Options (variable) 

Data … 

Byte streams 
numbered 
independently in 
each direction 

Sequence number assigned to start 
of byte stream is picked when 
connection begins; doesn’t start at 0 



TCP Header

Acknowledgment 
gives seq # just 
beyond highest seq. 
received in order. 
 
If sender successfully 
sends N bytestream 
bytes starting at seq 
S then “ack” for that 
will be S+N. 

Source port Destination port 

Sequence number 

Acknowledgment 

Advertised window HdrLen Flags 0 

Checksum Urgent pointer 

Options (variable) 

Data … 



Sequence Numbers
Host A 

Host B 

TCP Data 

TCP Data 

TCP  
HDR 

TCP  
HDR 

ISN (initial sequence number) 

Sequence 
number from A 

= 1st byte of 
data 

ACK sequence 
number from B 

= next 
expected byte 



TCP Header

Uses include:  
 
acknowledging 
data (“ACK”)  
 
setting up (“SYN”) 
and closing 
connections 
(“FIN” and “RST”) 

Source port Destination port 

Sequence number 

Acknowledgment 

Advertised window HdrLen Flags 0 

Checksum Urgent pointer 

Options (variable) 

Data … 



Establishing a TCP Connection

• Three-way handshake to establish connection 

A B 



Establishing a TCP Connection

• Three-way handshake to establish connection 

A B 
Each host tells its Initial 

Sequence Number 
(ISN) to the other host.

(Spec says to pick based 
on a clock)



Establishing a TCP Connection

• Three-way handshake to establish connection 
– Host A sends a SYN (open; “synchronize sequence 

numbers”) to host B 

SYN 
A B 

Each host tells its Initial 
Sequence Number 

(ISN) to the other host.

(Spec says to pick based 
on a clock)



Establishing a TCP Connection

• Three-way handshake to establish connection 
– Host A sends a SYN (open; “synchronize sequence 

numbers”) to host B 
– Host B returns a SYN acknowledgment (SYN+ACK) 

SYN 

SYN+ACK 

A B 
Each host tells its Initial 

Sequence Number 
(ISN) to the other host.

(Spec says to pick based 
on a clock)



Establishing a TCP Connection

• Three-way handshake to establish connection 
– Host A sends a SYN (open; “synchronize sequence 

numbers”) to host B 
– Host B returns a SYN acknowledgment (SYN+ACK) 
– Host A sends an ACK to acknowledge the SYN+ACK 

SYN 

SYN+ACK 

ACK 

A B 
Each host tells its Initial 

Sequence Number 
(ISN) to the other host.

(Spec says to pick based 
on a clock)



Establishing a TCP Connection

• Three-way handshake to establish connection 
– Host A sends a SYN (open; “synchronize sequence 

numbers”) to host B 
– Host B returns a SYN acknowledgment (SYN+ACK) 
– Host A sends an ACK to acknowledge the SYN+ACK 

SYN 

SYN+ACK 

ACK 

A B 

Data 
Data 

Each host tells its Initial 
Sequence Number 

(ISN) to the other host.

(Spec says to pick based 
on a clock)



Timing Diagram: 3-Way Handshaking

Client (initiator) 

Server 

SYN, SeqNum = x 

SYN + ACK, SeqNum = y, Ack = x + 1 

ACK, SeqNum = x + 1, Ack = y + 1 

Active 
Open 

Passive 
Open 

connect()

listen()

accept()

Different starting 
initial sequence 

numbers (ISNs) in 
each direction 



TCP Conn. Setup & Data Exchange
Client (initiator) 

IP address 1.2.1.2, port 3344 
Server 

IP address 9.8.7.6, port 80 
SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80, SYN, Seq = x 

SrcA=9.8.7.6, SrcP=80, 

DstA=1.2.1.2, DstP=3344, SYN+ACK, Seq = y, Ack = x+1 

SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80, ACK, Ack = y+1 SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80, 
ACK, Seq=x+1, Ack = y+1, Data=“GET /login.html 

SrcA=9.8.7.6, SrcP=80, DstA=1.2.1.2, DstP=3344, 

ACK, Seq = y+1, Ack = x+16, Data=“200 OK … <html> …” 



27 

•  Normally, TCP finishes (“closes”) a connection 
by each side sending a FIN control message 
–  Reliably delivered, since other side must ack 

•  But: if a TCP endpoint finds unable to continue 
(process dies; info from other “peer” is 
inconsistent), it abruptly terminates by sending a 
RST control message 
–  Unilateral 
–  Takes effect immediately (no ack needed) 
–  Only accepted by peer if has correct* sequence 

number 

TCP Threat: Disruption 



Source port Destination port 

Sequence number 

Acknowledgment 

Advertised window HdrLen Flags 0 

Checksum Urgent pointer 

Options (variable) 

Data … 



Source port Destination port 

Sequence number 

Acknowledgment 

Advertised window HdrLen 

R
S
T0 

Checksum Urgent pointer 

Options (variable) 



Abrupt Termination

•  A sends a TCP packet with RESET (RST) flag to B 
–  E.g., because app. process on A crashed 
–  (Could instead be that B sends a RST to A) 

•  Assuming that the sequence numbers in the RST fit with what B 
expects, That’s It: 
– B’s user-level process receives: ECONNRESET 
–  No further communication on connection is possible 

SY
N

 

SY
N

 A
CK

 

A
CK

 
D

at
a 

RS
T A

CK
 

time 
A 

B X 



•  Normally, TCP finishes (“closes”) a connection 
by each side sending a FIN control message 
–  Reliably delivered, since other side must ack 

•  But: if a TCP endpoint finds unable to continue 
(process dies; info from other “peer” is 
inconsistent), it abruptly terminates by sending a 
RST control message 
–  Unilateral 
–  Takes effect immediately (no ack needed) 
–  Only accepted by peer if has correct* sequence 

number 

•  So: if attacker knows ports & sequence numbers, 
can disrupt any TCP connection 

TCP Threat: Disruption 



TCP RST Injection
Client (initiator) 

IP address 1.2.1.2, port 3344 
Server 

IP address 9.8.7.6, port 80 

SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80, 
ACK, Seq=x+1, Ack = y+1, Data=“GET /login.html 

... 

Attacker 
IP address 6.6.6.6, port N/A 

SrcA=9.8.7.6, SrcP=80, 
DstA=1.2.1.2, DstP=3344, 

RST, Seq = y+1, Ack = x+16 

Client 
dutifully 
removes 

connection 

Spoofed	



TCP RST Injection
Client (initiator) 

IP address 1.2.1.2, port 3344 
Server 

IP address 9.8.7.6, port 80 

SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80, 
ACK, Seq=x+1, Ack = y+1, Data=“GET /login.html 

... 

SrcA=9.8.7.6, SrcP=80, DstA=1.2.1.2, DstP=3344, 

ACK, Seq = y+1, Ack = x+16, Data=“200 OK … <html> …” 

Attacker 
IP address 6.6.6.6, port N/A 

SrcA=9.8.7.6, SrcP=80, 
DstA=1.2.1.2, DstP=3344, 

RST, Seq = y+1, Ack = x+16 

X 

Client 
rejects 

since no 
active 

connection 

Spoofed	



TCP Threat: Data Injection

•  What about inserting data rather than disrupting a connection? 
–  Again, all that’s required is attacker knows correct ports, seq. numbers 
–  Receiver B is none the wiser! 

•  Termed TCP connection hijacking (or “session hijacking”) 
–  A general means to take over an already-established connection! 

•  We are toast if an attacker can see our TCP traffic! 
–  Because then they immediately know the port & sequence numbers 

SY
N

 

SY
N

 A
CK

 

A
CK

 
D

at
a 

A
CK

 

time 
A 

B 

N
as

ty
 D

at
a 

N
as

ty
 D

at
a2

 



TCP Data Injection
Client (initiator) 

IP address 1.2.1.2, port 3344 
Server 

IP address 9.8.7.6, port 80 

SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80, 
ACK, Seq=x+1, Ack = y+1, Data=“GET /login.html 

... 

Attacker 
IP address 6.6.6.6, port N/A 

SrcA=9.8.7.6, SrcP=80, 
DstA=1.2.1.2, DstP=3344, 

ACK, Seq = y+1, Ack = x+16 
Data=“200 OK … <poison> …” 

Client 
dutifully 

processes 
as server’s 
response 

Spoofed	



TCP Data Injection
Client (initiator) 

IP address 1.2.1.2, port 3344 
Server 

IP address 9.8.7.6, port 80 

SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80, 
ACK, Seq=x+1, Ack = y+1, Data=“GET /login.html 

... 

Attacker 
IP address 6.6.6.6, port N/A 

SrcA=9.8.7.6, SrcP=80, 
DstA=1.2.1.2, DstP=3344, 

ACK, Seq = y+1, Ack = x+16 
Data=“200 OK … <poison> …” Client 

ignores 
since 

already 
processed 
that part of 
bytestream 

SrcA=9.8.7.6, SrcP=80, DstA=1.2.1.2, DstP=3344, 

ACK, Seq = y+1, Ack = x+16, Data=“200 OK … <html> …” 

Spoofed	



TCP Threat: Blind Spoofing

•  Is it possible for an attacker to inject into a TCP 
connection even if they can’t see our traffic? 

•  YES: if somehow they can infer or guess the port 
and sequence numbers 

•  Let’s look at a simpler related attack where the 
goal of the attacker is to create a fake connection, 
rather than inject into a real one 
–  Why? 
–  Perhaps to leverage a server’s trust of a given client as 

identified by its IP address 
–  Perhaps to frame a given client so the attacker’s 

actions during the connections can’t be traced back to 
the attacker 



Spoofing an Entire TCP Connection
Alleged Client (not actual) 
IP address 1.2.1.2, port N/A 

Server 
IP address 9.8.7.6, port 80 

Blind 
Attacker SrcA=1.2.1.2, SrcP=5566, 

DstA=9.8.7.6, DstP=80, SYN, Seq = z 

SrcA=9.8.7.6, SrcP=80, 

DstA=1.2.1.2, DstP=5566, SYN+ACK, Seq = y, Ack = z+1 

Attacker’s goal: 
SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6, 

DstP=80, ACK, Seq = z+1, ACK = y+1 

SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6, 
DstP=80, ACK, Seq = z+1, ACK = y+1, 

Data = “GET /transfer-money.html” 



Spoofing an Entire TCP Connection
Alleged Client (not actual) 
IP address 1.2.1.2, port NA 

Server 
IP address 9.8.7.6, port 80 

Blind 
Attacker SrcA=1.2.1.2, SrcP=5566, 

DstA=9.8.7.6, DstP=80, SYN, Seq = z 

SrcA=9.8.7.6, SrcP=80, 

DstA=1.2.1.2, DstP=5566, SYN+ACK, Seq = y, Ack = x+1 

Small Note #1: if client receives this, will be 
confused ⇒ send a RST back to server … 
… So attacker may need to hurry! 



Spoofing an Entire TCP Connection
Alleged Client (not actual) 
IP address 1.2.1.2, port NA 

Server 
IP address 9.8.7.6, port 80 

Blind 
Attacker SrcA=1.2.1.2, SrcP=5566, 

DstA=9.8.7.6, DstP=80, SYN, Seq = z 

SrcA=9.8.7.6, SrcP=80, 

DstA=1.2.1.2, DstP=5566, SYN+ACK, Seq = y, Ack = z+1 

Big Note #2: attacker doesn’t 
get to see this packet! 



Spoofing an Entire TCP Connection
Alleged Client (not actual) 
IP address 1.2.1.2, port N/A 

Server 
IP address 9.8.7.6, port 80 

Blind 
Attacker SrcA=1.2.1.2, SrcP=5566, 

DstA=9.8.7.6, DstP=80, SYN, Seq = z 

SrcA=9.8.7.6, SrcP=80, 

DstA=1.2.1.2, DstP=5566, SYN+ACK, Seq = y, Ack = z+1 

So how can the attacker 
figure out what value of y 
to use for their ACK? 

SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6, 
DstP=80, ACK, Seq = z+1, ACK = y+1 

SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6, 
DstP=80, ACK, Seq = z+1, ACK = y+1, 

Data = “GET /transfer-money.html” 



Reminder: Establishing a TCP Connection

SYN 

SYN+ACK 

ACK 

A B 

Data 
Data 

Each host tells its Initial 
Sequence Number 

(ISN) to the other host.

(Spec says to pick based 
on a clock)

Hmm, any way 
for the attacker 
to know this? 

Sure - make a non-spoofed 
connection first, and see what 

server used for ISN y then! 

How Do We Fix This? 

Use a (Pseudo)-
Random ISN 



•  An attacker who can observe your TCP connection can 
manipulate it: 
–  Forcefully terminate by forging a RST packet 
–  Inject (spoof) data into either direction by forging data packets 
–  Works because they can include in their spoofed traffic the 

correct sequence numbers (both directions) and TCP ports 
–  Remains a major threat today 

Summary of TCP Security Issues



•  An attacker who can observe your TCP connection can 
manipulate it: 
–  Forcefully terminate by forging a RST packet 
–  Inject (spoof) data into either direction by forging data packets 
–  Works because they can include in their spoofed traffic the 

correct sequence numbers (both directions) and TCP ports 
–  Remains a major threat today 

•  An attacker who can predict the ISN chosen by a server 
can “blind spoof” a connection to the server 
–  Makes it appear that host ABC has connected, and has sent data 

of the attacker’s choosing, when in fact it hasn’t 
–  Undermines any security based on trusting ABC’s IP address 
–  Allows attacker to “frame” ABC or otherwise avoid detection 
–  Fixed (mostly) today by choosing random ISNs 

Summary of TCP Security Issues



5 Minute Break 

 
Questions Before We Proceed? 



DNS: Operation & Threats 



Host Names vs. IP addresses
• Host names 

– Examples: www.cnn.com and bbc.co.uk	
– Mnemonic name appreciated by humans 
– Variable length, full alphabet of characters 
– Provide little (if any) information about location 

• IP addresses 
– Examples: 64.236.16.20 and 212.58.224.131 
– Numerical address appreciated by routers 
– Fixed length, binary number 
– Hierarchical, related to host location 



Mapping Names to Addresses
• Domain Name System (DNS) 

–  Hierarchical name space divided into sub-trees 
(“zones”) 
o  E.g. .edu, .berkeley.edu, .eecs.berkeley.edu 

–  Zones distributed over collection of DNS name servers 

• Hierarchy of DNS servers 
–  Root (hardwired into other servers) 
–  Top-level domain (TLD) servers 

o  E.g. .com, .org, .net, .uk, .biz 
–  “Authoritative” DNS servers (e.g. for facebook.com) 

•  End systems configured with IP address of a 
resolver to contact for their lookups 



requesting host 
xyz.poly.edu gaia.cs.umass.edu 

root DNS server (‘.’) 

local DNS server 
(resolver) 

128.238.1.68 

1 

2 
3 

4 
5 

6 
authoritative DNS server 

(‘umass.edu’, 
‘cs.umass.edu’) 

dns.cs.umass.edu 

7 8 

TLD DNS server 
(‘.edu’) 

DNS Lookups via a Resolver

Host at xyz.poly.edu 
wants IP address for 
gaia.cs.umass.edu 

Caching heavily 
used to minimize 

lookups 



DNS Threats
• DNS: path-critical for just about everything we do 

– Maps hostnames ⇔ IP addresses 
– Design only scales if we can minimize lookup traffic 

o  #1 way to do so: caching 
o  #2 way to do so: return not only answers to queries, but additional 

info that will likely be needed shortly 

• What if attacker eavesdrops on our DNS queries? 
– Simple to then redirect us w/ spoofed misinformation 

• Consider attackers who can’t eavesdrop - but still 
aim to manipulate us via how the protocol functions 

• Directly interacting w/ DNS: dig program on Unix 
– Allows querying of DNS system 
– Dumps each field in DNS responses 



 
dig eecs.mit.edu A 
 
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a 
;; global options: +cmd 
;; Got answer: 
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901 
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3 
 
;; QUESTION SECTION: 
;eecs.mit.edu.                  IN      A 
 
;; ANSWER SECTION: 
eecs.mit.edu.           21600   IN      A       18.62.1.6 
 
;; AUTHORITY SECTION: 
mit.edu.                11088   IN      NS      BITSY.mit.edu. 
mit.edu.                11088   IN      NS      W20NS.mit.edu. 
mit.edu.                11088   IN      NS      STRAWB.mit.edu. 
 
;; ADDITIONAL SECTION: 
STRAWB.mit.edu.         126738  IN      A       18.71.0.151 
BITSY.mit.edu.          166408  IN      A       18.72.0.3 
W20NS.mit.edu.          126738  IN      A       18.70.0.160 

Use Unix “dig” utility to look up IP address 
(“A”) for hostname eecs.mit.edu via DNS 



 
dig eecs.mit.edu A 
 
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a 
;; global options: +cmd 
;; Got answer: 
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901 
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3 
 
;; QUESTION SECTION: 
;eecs.mit.edu.                  IN      A 
 
;; ANSWER SECTION: 
eecs.mit.edu.           21600   IN      A       18.62.1.6 
 
;; AUTHORITY SECTION: 
mit.edu.                11088   IN      NS      BITSY.mit.edu. 
mit.edu.                11088   IN      NS      W20NS.mit.edu. 
mit.edu.                11088   IN      NS      STRAWB.mit.edu. 
 
;; ADDITIONAL SECTION: 
STRAWB.mit.edu.         126738  IN      A       18.71.0.151 
BITSY.mit.edu.          166408  IN      A       18.72.0.3 
W20NS.mit.edu.          126738  IN      A       18.70.0.160 

This is dig identifying its version and 
the query it is attempting to look up 



 
dig eecs.mit.edu A 
 
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a 
;; global options: +cmd 
;; Got answer: 
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901 
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3 
 
;; QUESTION SECTION: 
;eecs.mit.edu.                  IN      A 
 
;; ANSWER SECTION: 
eecs.mit.edu.           21600   IN      A       18.62.1.6 
 
;; AUTHORITY SECTION: 
mit.edu.                11088   IN      NS      BITSY.mit.edu. 
mit.edu.                11088   IN      NS      W20NS.mit.edu. 
mit.edu.                11088   IN      NS      STRAWB.mit.edu. 
 
;; ADDITIONAL SECTION: 
STRAWB.mit.edu.         126738  IN      A       18.71.0.151 
BITSY.mit.edu.          166408  IN      A       18.72.0.3 
W20NS.mit.edu.          126738  IN      A       18.70.0.160 

Status values returned from the 
remote name server queried by dig  



 
dig eecs.mit.edu A 
 
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a 
;; global options: +cmd 
;; Got answer: 
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901 
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3 
 
;; QUESTION SECTION: 
;eecs.mit.edu.                  IN      A 
 
;; ANSWER SECTION: 
eecs.mit.edu.           21600   IN      A       18.62.1.6 
 
;; AUTHORITY SECTION: 
mit.edu.                11088   IN      NS      BITSY.mit.edu. 
mit.edu.                11088   IN      NS      W20NS.mit.edu. 
mit.edu.                11088   IN      NS      STRAWB.mit.edu. 
 
;; ADDITIONAL SECTION: 
STRAWB.mit.edu.         126738  IN      A       18.71.0.151 
BITSY.mit.edu.          166408  IN      A       18.72.0.3 
W20NS.mit.edu.          126738  IN      A       18.70.0.160 

Including a 16-bit transaction identifier that 
enables the DNS client (dig, in this case) to 
match up the reply with its original request 



 
dig eecs.mit.edu A 
 
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a 
;; global options: +cmd 
;; Got answer: 
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901 
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3 
 
;; QUESTION SECTION: 
;eecs.mit.edu.                  IN      A 
 
;; ANSWER SECTION: 
eecs.mit.edu.           21600   IN      A       18.62.1.6 
 
;; AUTHORITY SECTION: 
mit.edu.                11088   IN      NS      BITSY.mit.edu. 
mit.edu.                11088   IN      NS      W20NS.mit.edu. 
mit.edu.                11088   IN      NS      STRAWB.mit.edu. 
 
;; ADDITIONAL SECTION: 
STRAWB.mit.edu.         126738  IN      A       18.71.0.151 
BITSY.mit.edu.          166408  IN      A       18.72.0.3 
W20NS.mit.edu.          126738  IN      A       18.70.0.160 

The name server echoes back the 
question that it is answering as the first 
part of its reply 



 
dig eecs.mit.edu A 
 
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a 
;; global options: +cmd 
;; Got answer: 
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901 
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3 
 
;; QUESTION SECTION: 
;eecs.mit.edu.                  IN      A 
 
;; ANSWER SECTION: 
eecs.mit.edu.           21600   IN      A       18.62.1.6 
 
;; AUTHORITY SECTION: 
mit.edu.                11088   IN      NS      BITSY.mit.edu. 
mit.edu.                11088   IN      NS      W20NS.mit.edu. 
mit.edu.                11088   IN      NS      STRAWB.mit.edu. 
 
;; ADDITIONAL SECTION: 
STRAWB.mit.edu.         126738  IN      A       18.71.0.151 
BITSY.mit.edu.          166408  IN      A       18.72.0.3 
W20NS.mit.edu.          126738  IN      A       18.70.0.160 

“Answer” tells us the IP address associated 
with eecs.mit.edu is 18.62.1.6 and we can 
cache the result for 21,600 seconds 


