
Lecture Outline

• Alternatives to IPv4 addressing
architecture: security implications

• “Tussles” in architectures that affect
multiple stakeholders

• Ethane: the good and the could-have-
been-better

• Review of Diffie-Hellman key exchange
• Starting to look at Authentication

IPv4 Addressing Architecture
• High-level architecture of IPv4 addresses?
• Abstraction: addresses are both locators

and identifiers
– Locators: bits are topologically relevant

• Includes: multicast, broadcast, private networks
– Identifiers: addresses used to identify

connection endpoints
• Have global meaning

• Naming: addresses are associated with
NICs rather than end systems or people

IPv4 Addressing: Mechanisms
• Addresses are represented with 32 bits

– Limited room available for topological structure
– Possible (today) to fully enumerate
– Limited supply ⇒ architectural stress (NATs)

• Bit patterns have topological significance
– Original design: class A/B/C networks
– Current design: CIDR

• Packets carry source addresses
– Which are set by sending system

IPv4 Addressing: Implications
• Addresses are locators

– Routers can function without per-connection state
• Addresses are identifiers

– Easy for end systems to associate incoming
packets with existing connections/state

– Mobility is tricky
– Dynamic addresses are tricky
– Migrating a connection from one system to

another is (very) tricky
• End systems set source address ⇒ spoofing

Who Needs Source Addresses?
• Idea #1: build up return route in packet as it’s

forwarded
– Each router adds its “address” to a list in header
– “Address” might just be interface tag

• E.g. return route of “I3, I6, I3, I2, I9” means “first router sends out
on its Interface 3, then receiving router forwards to its Interface 6,
then that receiving router forward to its Interface 3, …”

• Properties?
– Spoofing requires infrastructure compromise
– But: less flexibility for return paths
– And: more header space requires

Who Needs Source Addresses?
• Idea #2: address is “routable public key”
• All messages are signed by source
• All messages are encrypted for destination
• Strengths?

– No more spoofing!
– No more sniffing!
– Wide-ranging portability
– Plenty of addresses (no need for DHCP)

Who Needs Source Addresses?
• Weaknesses?

– Messes up prefix-based routing (HUGE)
– Large addresses ⇒ spatial overhead
– Generating addresses tricky for devices with little

entropy available

• Suppose we can solve these issues: would
the architecture be viable in practice?

Tussle

• “All messages are encrypted” ⇒ tussle
between end users and site security monitors

• Architecture pre-supposes policy (e.g., 100%
network privacy) because it shapes what is
expressible

Tussles: Scope
• Tussles exist across domains
• Different stakeholders ⇒ different interests

– Each vies for their own concerns (~ adversarial)
• Examples of stakeholders?

– Commercial ISPs
– Enterprise operators
– Government (enforce laws; protect consumers;

regulate commerce; restrict information)
– Content providers
– Intellectual property rights holders
– Individual users

Architecting for Tussle:
Avoid Overloading

• IP addresses having topological significance
⇒ difficult for sites to renumber
⇒ adds friction for sites to switch providers
⇒ architecture inadvertently undermines

competition between ISPs

• Alternative?
– Have locators distinct from identifiers

Tussles: Avoid Overloading, con’t
• DNS provides both names-independent-of-

location and human-visible branding
⇒ leads to land grabs / typo-squatting

• Alternative?
– Opaque identifiers plus separate “directory

service” for users to find sites
– Today, in practice this latter is search engines

Tussles: Implications
• For architecture, can design to presume

tussle resolution (e.g., “communication is
always encrypted”) …
– Either works great or fails hugely

• Or: provide choice at tussle “boundaries”
• Choice requires visibility into the different

opportunities
– For our IPv4 alternative addressing example:

maybe decouple encryption key from routing key
• Note: game theory can provide insights

Architecting for Tussle
• Today’s middleboxes impose a narrow dialog

between end systems and the network
– Often, middleboxes are “invisible” to end systems
– Often, a middlebox can only make a best effort

guess as to nature of end-system activity
• Alternative architecture:

– End systems describe high-level nature of traffic
– Middleboxes signal whether acceptable or not
– End systems choose alternative path depending

on importance of maintaining privacy/integrity
• Consider architecting for this using typing

Dialog

Typing paves way for dialog to negotiate
communication properties

- (All) Private types
- No Readable types
- No Modifiable types

Desired level
of visibility/
control?- Fewer private types

- Exe readable
- No modifiable types

Sender may choose an alternate path.
Fail if no such path à reason in full view

Network has upper hand, but visibility limits collateral damage

Reject

Need exe

Accept

Pre-connection or in-band

Sender

NE
Exe Checker

Receiver

Progression of Communication

Sender
Receiver

NE2
Cookie sniffer

NE3
Cookie sniffer

NE1
Exe blocker

1. Route
discovery

2. Policy
discovery

3. Path
selection

4. Key exchange

5. Encrypted typed transfer

6. Message
reception

Mechanism
separate from policy

Ease of
management

This sort of lack of
coherent overall policy
is typical in enterprises

… as is having
lots of stale policy

Proof-of-principle
deployment

Viable path forward

No clear threat model: a “resonance” paper

Architectural notions?

Ethane Architecture
• Changes basic notion of Ethernet forwarding

– New notion is more complex
(switches though are simpler)

• Switches maintain per-flow state
• Strongly enforces default deny
• Strongly enforces compliance with policy
• Strong awareness of higher-level identity

– Can perceive/control user network activity
– Can reason about policy in high-level terms

Ethane’s Scalability Premise?
• Flows are not exceedingly short

THE PENDULUM OF SYSTEMS DESIGN

AS THESE CHANGE
IN RELATIVE TERMS,
SO DO ARCHITECTURES

e.g. mobile handsets
expensive local computation,
expensive communication ⇒
communication becomes cheaper
⇒ transformative for app design

e.g. cloud
IF have sufficient bandwidth
⇒ can leverage cheap remote

computation

What’s not to like?

High-end $27K (2009)

Should investigate
potential onset of thrashing

What’s going on down here?
Cold caches?

A check takes < 60 nsec??

There are no flows for hours
at a site w/ 8,000 hosts?

Complete misinterpretation
of LBL dataset: it is a series
of traces one-port-at-a-time
for inter-subnet traffic

OTOH, fact that authors ran
system for real overcomes a lot of
these sorts of evaluation concerns

