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IPv4 Addressing Architecture

* High-level architecture of IPv4 addresses?

 Abstraction: addresses are both /locators
and identifiers

— Locators: bits are topologically relevant
* Includes: multicast, broadcast, private networks

— Identifiers: addresses used to identify
connection endpoints

* Have

 Naming: addresses are associated with
NICs rather than end systems or people



IPv4 Addressing: Mechanisms

 Addresses are represented with 32 bits
— Limited room available for topological structure
— Possible (today) to fully enumerate
— Limited supply = architectural stress (NATS)

» Bit patterns have topological significance

— Original design: class A/B/C networks
— Current design: CIDR

* Packets carry source addresses
— Which are set by sending system



IPv4 Addressing: Implications

* Addresses are locators
— Routers can function without per-connection state

 Addresses are identifiers

— Easy for end systems to associate incoming
packets with existing connections/state

— Mobillity is tricky
— Dynamic addresses are tricky

— Migrating a connection from one system to
another is (very) tricky

* End systems set source address = spoofing



Who Needs Source Addresses?

* |ldea #1: build up return route in packet as it's
forwarded

— Each router adds its “address” to a list in header
— “Address” might just be interface tag

« E.g. return route of “13, 16, 13, 12, 19" means *first router sends out
on its Interface 3, then receiving router forwards to its Interface 6,
then that receiving router forward to its Interface 3, ...”

* Properties?
— Spoofing requires infrastructure compromise
— But: less flexibility for return paths
— And: more header space requires



Who Needs Source Addresses?

» |dea #2: address is “routable public key”
* All messages are by source

* All messages are for destination

« Strengths?

— No more spoofing!

— No more sniffing!

— Wide-ranging portability

— Plenty of addresses (no need for DHCP)




Who Needs Source Addresses?

* Weaknesses?
— Messes up prefix-based routing (HUGE)
— Large addresses = spatial overhead

— Generating addresses tricky for devices with little
entropy available

* Suppose we can solve these issues: would
the architecture be viable in practice?



Tussle

* “All messages are encrypted” = tussle
between end users and site security monitors

 Architecture (e.g., 100%
network privacy) because it shapes what is
expressible



Tussles: Scope

e Tussles exist across domains

o Different stakeholders = different interests
— Each vies for their own concerns (~ adversarial)

 Examples of stakeholders?
— Commercial ISPs
— Enterprise operators

— Government (enforce laws; protect consumers;
regulate commerce; restrict information)

— Content providers
— Intellectual property rights holders
— Individual users



Architecting for Tussle:
Avoid Overloading

 |P addresses having topological significance
= difficult for sites to renumber
= adds friction for sites to switch providers
= architecture inadvertently undermines

competition between ISPs

o Alternative?
— Have locators distinct from identifiers



Tussles: Avoid Overloading, con't

 DNS provides both names-independent-of-
location and human-visible branding
= leads to land grabs / typo-squatting

o Alternative?

— Opaque identifiers plus separate “directory
service” for users to find sites

— Today, in practice this latter is search engines



Tussles: Implications

For architecture, can design to presume
tussle resolution (e.g., “communication is
always encrypted”) ...

— Either works great or fails hugely
Or: provide choice at tussle “boundaries”

Choice requires visibility into the different
opportunities

— For our IPv4 alternative addressing example:
maybe decouple encryption key from routing key

Note: game theory can provide insights



Architecting for Tussle

* Today's middleboxes impose a narrow dialog
between end systems and the network
— Often, middleboxes are “invisible” to end systems
— Often, a middlebox can only make a best effort
guess as to nature of end-system activity
» Alternative architecture:
— End systems describe high-level nature of traffic

— Middleboxes signal whether acceptable or not

— End systems choose alternative path depending
on importance of maintaining privacy/integrity

» Consider architecting for this using typing



Dialog

Typing paves way for dialog to negotiate
communication properties

NE
: Exe Checker
ﬂll) Private types

- No Readable types =====2 :
Yp Desired level Accept

- No Modifiable types Reject of visibility/ e ¢4 Q Receiver
- Fewer private types < ——-— control?

- Exe readable Need exe
- No modifiable types ———-->

Pre-connection or in-band

Sender may choose an alternate path.
Fail if no such path = reason in full view

Network has upper hand, but visibility limits collateral damage




Progression of Communication
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downtime in multi-vendor networks comes from human-error and
that 80% of I'T budgets is spent on maintenance and operations [16].

There have been many attempts to make networks more manage-
able and more secure. One approach introduces proprietary middle-
boxes that can exert their control effectively only if placed at net-
work choke-points. If traffic accidentally flows (or is maliciously
diverted) around the middlebox, the network is no longer managed
nor secure [25]. Another approach is to add functionality to ex-
isting networks—to provide tools for diagnosis, to offer controls
for VLANS, access-control lists, and filters to isolate users, to in-
strument the routing and spanning tree algorithms to support better
connectivity management, and then to collect packet traces to al-
low auditing. This can be done by adding a new layer of protocols,
scripts, and applications [1, 10] that help automate configuration
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There are currently approximately 300 hosts on

this Ethane network, with an average of 120 hosts active in a 5-
minute window. We created a network policy to closely match—
and 1n most cases exceed—the connectivity control already in place.
We pieced together the existing policy by looking at the use of
VLANSs, end-host firewall conﬁguratlons NATSs and router ACLs.
: onfiguration files contalned rules
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Architectural notions?

ABSTRACT

This paper presents Ethane, a new network architecture for the
enterprise. Ethane allows managers to define a single network-
wide fine-grain policy, and then enforces it directly. Ethane cou-
ples extremely simple flow-based Ethernet switches with a central-
ized controller that manages the admittance and routing of flows.
While radical, this design is backwards-compatible with existing
hosts and switches.

We have implemented Ethane in both hardware and software,
supporting both wired and wireless hosts. Our operational Ethane
network has supported over 300 hosts for the past four months in
in Stanford University’s network, and this deployment experience
has significantly affected Ethane’s design.

downtime in multi-vendor networks comes from human-error and
that 80% of I'T budgets is spent on maintenance and operations [16].

There have been many attempts to make networks more manage-
able and more secure. One approach introduces proprietary middle-
boxes that can exert their control effectively only if placed at net-
work choke-points. If traffic accidentally flows (or is maliciously
diverted) around the middlebox, the network is no longer managed
nor secure [25]. Another approach is to add functionality to ex-
isting networks—to provide tools for diagnosis, to offer controls
for VLANS, access-control lists, and filters to isolate users, to in-
strument the routing and spanning tree algorithms to support better
connectivity management, and then to collect packet traces to al-
low auditing. This can be done by adding a new layer of protocols,
scripts, and applications [1, 10] that help automate configuration



Ethane Architecture

Changes basic notion of Ethernet forwarding

— New notion is more complex
(switches though are simpler)

Switches maintain per-flow state
Strongly enforces default deny
Strongly enforces compliance with policy

Strong awareness of higher-level identity
— Can perceive/control user network activity
— Can reason about policy in high-level terms



Ethane’s Scalability Premise?

* Flows are not exceedingly short

THE PENDULUM OF SYSTEMS DESIGN

I AS THESE CHANGE I
7 N\ | IN RELATIVE TERMS, |
/ \ SO DO ARCHITECTURES

e.g. mobile handsets

expensive local computation,
expensive communication =
communication becomes cheaper
= transformative for app design

e.g. cloud

IF have sufficient bandwidth

= can leverage cheap remote
computation




What’s not to like?
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Figure 10: Round-trip latencies experienced by packets
through a diamond topology during link failure.



[t 1s also worth noting that the flow table can be several orders-of-
magnitude smaller than the forwarding table in an equivalent Eth-
ernet switch. In an Ethernet switch, the table 1s sized to minimize
broadcast traffic: as switches flood during learning, this can swamp
links and makes the network less secure.” As a result, an Ethernet
switch needs to remember all the addresses 1t’s likely to encounter;
even small wiring closet switches typically contain a million en-
tries. Ethane Switches. on the other hand. can have much smaller

two-way hashing scheme [9]. A typical commercial enterprise Eth-
ernet switch today holds 1 million Ethernet addresses (6MB, but

larger 1f hashing 1s used), 1 million IP addresses i4MB of TCAM i‘

Table 1. Scalability Table
y- BN

Name Ws-5UPT20-3B WS-SUPT20-3BXL V§-5720-10G-3C* { V8-5720-10G-3CXL*

MAC 64,000 64,000 96,000

L=
ag,000 )
Entries

Routes | 256,000 (IPv4); 128,000 (IPvE) 1,000,000 (IPv4); 500,000 (IPvE) 256,000 (1Pv4); 128,000 (IPvE) \ 1,000,000 (IPv4), 500,000 (IPvE) /

paN
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Figure 6: Flow-setup times as a function of Controller load.
Packet sizes were 64B, 128B and 256B, evenly distributed.
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heads. The Controller was configured with a policy file of 50 rules
and 100 registered principles; routes were precalculated and cached.
Under these conditions, the system could handle 650,845 bind events
per second and 16,972,600 permission checks per second. The
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OTOH, fact that authors ran T !
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