
Lecture Outline

• Protocols for detecting manipulation
• How to think about “architecture”

– In general systems terms
– For security implications

• “Tussles” in architectures that affect
multiple stakeholders

• Ethane: the good and the could-have-
been-better

Detecting manipulation, con’t:

… by destroying information an attacker needs
… by creating information an attacker can’t destroy

Alice

Bob

Alice wants to pair with Bob via D-H exchange.

Alice

Bob

Charlie

Alice

Bob

Mallory

Charlie is a benign third party.
Everyone can hear everyone else.
Including Mallory. Mallory can cheat.
Mallory wants Alice to mistakenly pair w/ Mallory.

Threat: Mallory
answers before Bob
has a chance to

Alice

Bob

Defense: Alice keeps doing
protocol, rejects pairing if
hears more than one

Alice

Bob

Threat: Mallory jams Bob’s reply
and Alice thinks only one was sent.
This can happen for benign
reasons (Charlie), so Alice doesn’t
know it’s manipulation.

Alice

Bob

Threat: Mallory swamps
Bob’s reply w/ higher-
powered responses

Alice

Bob

Goal: tamper-evident pairing
Alice can tell someone is messing
with her attempt, and will try again
later, until no evident tampering

Idea: extend protocol with
extra packet slots, some of
which must be empty (silent)

Long burst that ensures
all legit sources will be
quiet in the next slot

Idea: extend protocol with
extra packet slots, some of
which must be empty (silent)

Upon seeing this, Bob
knows the protocol’s in effect

Idea: extend protocol with
extra packet slots, some of
which must be empty (silent)

Alice’s D-H data

Idea: extend protocol with
extra packet slots, some of
which must be empty (silent)

Alice reserves a
bunch of packet slots

Idea: extend protocol with
extra packet slots, some of
which must be empty (silent)

Alice sends a hash of
D-H data …
… encoded as

packet-sent = 1 bit,
no-packet-sent = 0 bit

Idea: extend protocol with
extra packet slots, some of
which must be empty (silent)

Bob does the same
for Bob’s D-H data

Alice knows collision is
violation of her slot
reservation: tampering

Threat: Mallory sends early and now jams
Bob’s reply so Alice thinks earlier one was
the only one sent.
Can happen for benign reasons (Charlie),
so Alice doesn’t know it’s manipulation.

?

Threat: Mallory swamps
Bob’s reply w/ higher-
powered responses

Bob will “step on” some of Mallory’s 0-bit hash
slots due to Bob’s own hash having 1-bits in
those slots …
Alice will see that hash doesn’t match: tampering

?

New threat: Mallory
precomputes D-H data w/ a
hash of nearly all 1-bits ?

Solution: don’t directly encode 0/1 bits

Instead: (something like) Manchester encoding:
Encode 0 bit as 0 || 1
Encode 1 bit as 1 || 0

Q’s before moving on to
Architecture?

Building this …

… takes high-level thinking like this:

Architecture
• Engineering = “obtaining predictable &

desirable behavior”
• To engineer complex systems requires

designing overarching structure
– Abstractions
– Placement of functionality
– State management
– Naming

• Good architecture aligns mechanism
with functionality/enforcement

Architecture, con’t
• High-level/abstract nature can make it

hard to “get”
• Has a flavor of “think outside the box”:

in fact, “design the box”
• In security, we’re used to intensely

scrutinizing the box
– Rather than stepping back to consider its

design properties / how it could have been
different

⇒ Ask questions!

Abstractions?

Policy-neutral, strongly-
typed asynchronous events

Employ filtering and
reduction to balance
processing load

Connection-oriented
(e.g. TCP bytestreams
emphasized over packets)

Self-describing log files
linked together by opaque
identifiers

#separator \x09
#set_separator ,
#empty_field (empty)
#unset_field -
#path conn
#open 2016-07-13-16-16-57
#fields ts uid id.orig_h id.orig_p id.resp_h

id.resp_p proto service durationorig_bytes resp_bytes
conn_state local_orig local_resp missed_bytes
history orig_pkts orig_ip_bytes resp_pkts
resp_ip_bytes tunnel_parents

#types time string addr port addr port enum string
intervalcount count string bool bool count string
count count count count set[string]

1324071333.493287 CHhAvVGS1DHFjwGM9 192.168.1.79 51880
131.159.21.1 22 tcp ssh 6.1593262669 2501 SF
- - 0 ShAdDaFf25 3981 20 3549 -

1409516196.337184 ClEkJM2Vm5giqnMf4h 10.0.0.18 40184
128.2.6.88 41644 tcp ssh 2.0790713813 3633 SF
- - 0 ShADadFf22 4965 26 5017 -

1419870189.485611 C4J4Th3PJpwUYZZ6gc 192.168.2.1 57189
192.168.2.158 22 tcp ssh 6.6417545253 3489 SF
- - 0 ShADadFf38 7241 29 5005 -

1419870206.101883 CtPZjS20MLrsMUOJi2 192.168.2.1 57191
192.168.2.158 22 tcp ssh 3.862198576 813 SF
- - 0 ShAdDaFf23 1784 16 1653 -

#separator \x09
#set_separator ,
#empty_field (empty)
#unset_field -
#path ssh
#open 2018-10-23-15-34-42
#fields ts uid id.orig_h id.orig_p id.resp_h

id.resp_p version auth_success auth_attempts direction
client server cipher_alg mac_alg compression_alg kex_alg
host_key_alg host_key

#types time string addr port addr port count bool
count enum string string string string string string
string string

1324071333.792887 CHhAvVGS1DHFjwGM9 192.168.1.79 51880
131.159.21.1 22 2 - 0 - SSH-2.0-

OpenSSH_5.9 SSH-2.0-OpenSSH_5.8 aes128-ctr hmac-md5
zlib@openssh.com ecdh-sha2-nistp256 ecdsa-sha2-nistp256
a7:26:62:3f:75:1f:33:8a:f3:32:90:8b:73:fd:2c:83

1409516196.413240 ClEkJM2Vm5giqnMf4h 10.0.0.18 40184
128.2.6.88 41644 2 T 1 - SSH-2.0-

OpenSSH_6.6 SSH-2.0-OpenSSH_5.9p1 Debian-5ubuntu1.1 aes128-ctr
hmac-md5none ecdh-sha2-nistp256 ssh-rsa
8a:8d:55:28:1e:71:04:99:94:43:22:89:e5:ff:e9:03

1419870189.489202 C4J4Th3PJpwUYZZ6gc 192.168.2.1 57189
192.168.2.158 22 2 T 3 - SSH-2.0-

OpenSSH_6.2 SSH-1.99-OpenSSH_6.6.1p1 Ubuntu-2ubuntu2 aes128-ctr
hmac-md5-etm@openssh.com none diffie-hellman-group-exchange-sha256
ssh-rsa 28:78:65:c1:c3:26:f7:1b:65:6a:44:14:d0:04:8f:b3

#separator \x09
#set_separator ,
#empty_field (empty)
#unset_field -
#path conn
#open 2016-07-13-16-16-57
#fields ts uid id.orig_h id.orig_p id.resp_h

id.resp_p proto service durationorig_bytes resp_bytes
conn_state local_orig local_resp missed_bytes
history orig_pkts orig_ip_bytes resp_pkts
resp_ip_bytes tunnel_parents

#types time string addr port addr port enum string
intervalcount count string bool bool count string
count count count count set[string]

1324071333.493287 CHhAvVGS1DHFjwGM9 192.168.1.79 51880
131.159.21.1 22 tcp ssh 6.1593262669 2501 SF
- - 0 ShAdDaFf25 3981 20 3549 -

1409516196.337184 ClEkJM2Vm5giqnMf4h 10.0.0.18 40184
128.2.6.88 41644 tcp ssh 2.0790713813 3633 SF
- - 0 ShADadFf22 4965 26 5017 -

1419870189.485611 C4J4Th3PJpwUYZZ6gc 192.168.2.1 57189
192.168.2.158 22 tcp ssh 6.6417545253 3489 SF
- - 0 ShADadFf38 7241 29 5005 -

1419870206.101883 CtPZjS20MLrsMUOJi2 192.168.2.1 57191
192.168.2.158 22 tcp ssh 3.862198576 813 SF
- - 0 ShAdDaFf23 1784 16 1653 -

Opaque identifier for linking
to other logs associated w/
same connection

#separator \x09
#set_separator ,
#empty_field (empty)
#unset_field -
#path ssh
#open 2018-10-23-15-34-42
#fields ts uid id.orig_h id.orig_p id.resp_h

id.resp_p version auth_success auth_attempts direction
client server cipher_alg mac_alg compression_alg kex_alg
host_key_alg host_key

#types time string addr port addr port count bool
count enum string string string string string string
string string

1324071333.792887 CHhAvVGS1DHFjwGM9 192.168.1.79 51880
131.159.21.1 22 2 - 0 - SSH-2.0-

OpenSSH_5.9 SSH-2.0-OpenSSH_5.8 aes128-ctr hmac-md5
zlib@openssh.com ecdh-sha2-nistp256 ecdsa-sha2-nistp256
a7:26:62:3f:75:1f:33:8a:f3:32:90:8b:73:fd:2c:83

1409516196.413240 ClEkJM2Vm5giqnMf4h 10.0.0.18 40184
128.2.6.88 41644 2 T 1 - SSH-2.0-

OpenSSH_6.6 SSH-2.0-OpenSSH_5.9p1 Debian-5ubuntu1.1 aes128-ctr
hmac-md5none ecdh-sha2-nistp256 ssh-rsa
8a:8d:55:28:1e:71:04:99:94:43:22:89:e5:ff:e9:03

1419870189.489202 C4J4Th3PJpwUYZZ6gc 192.168.2.1 57189
192.168.2.158 22 2 T 3 - SSH-2.0-

OpenSSH_6.2 SSH-1.99-OpenSSH_6.6.1p1 Ubuntu-2ubuntu2 aes128-ctr
hmac-md5-etm@openssh.com none diffie-hellman-group-exchange-sha256
ssh-rsa 28:78:65:c1:c3:26:f7:1b:65:6a:44:14:d0:04:8f:b3

Same identifier

Placement of
functionality?

Layered design with
instructions/control
passed “down” and data
stream flowing “up”

Security analysis only
occurs at script layer

State
management?

Stateless, other than
BPF filter.

State
management?

Per-flow protocol state.
Managed using
reference-counting.

State
management?

Extensive long-lived
state kept in script
variables.
Expiration either via
explicit “delete” or timer-
driven (delta T after
creation/read/write).

State
management?

Even longer-lived state
resides on disk …
... Or, today, in a “data lake”
such as Splunk/Elastic.

Architecture, con’t
• Can both provide security properties …

– We’ll see an example next week
• … and pose security issues
• E.g.: which components are trusted to

behave in what ways?

• Exploring an architecture’s emergent
security properties: IPv4 addressing

IPv4 Addressing Architecture
• High-level architecture of IPv4 addresses?
• Abstraction: addresses are both locators

and identifiers
– Locators: bits are topologically relevant

• Includes: multicast, broadcast, private networks
– Identifiers: addresses used to identify

connection endpoints
• Have global meaning

• Naming: addresses are associated with
NICs rather than end systems or people

IPv4 Addressing: Mechanisms
• Addresses are represented with 32 bits

– Limited room available for topological structure
– Possible (today) to fully enumerate
– Limited supply ⇒ architectural stress (NATs)

• Bit patterns have topological significance
– Original design: class A/B/C networks
– Current design: CIDR

• Packets carry source addresses
– Which are set by sending system

