
Lecture Outline

• Announcements:
– Homework for next week out by this evening
– Guest lecture a week from Friday

• Bill Marczak on Abusive Surveillance

• Today: broader notions relating to authentication
– Architecting to resist subverted clients
– Imprinting
– Multi-party identities (Ecommerce, web advertising)
– Bot-or-Not (CAPTCHAs)

Architecting to
Resist Subverted Clients

Threats?

• Sniffing, MITM (network; app-level relay)
⇒ Theft of password and/or authenticator

• 3rd-party manipulation of automation
– E.g. CSRF (browser fetching of images)
– E.g. XSS (browser execution of JS replies)

• Password security
– Blind guessing / bruteforcing
– Reuse (breaches)
– Phishing

• Compromised client: hijacking

Tackling Transaction Generators?

• How about using a separate system?
– Very inconvenient

• Desired properties:
– Compatible w/ existing legacy OS’s
– Can run general web applications
– No need to trust host OS
– Small TCB: attestable via TPM

Trusted hypervisor mediates
all physical I/O events

Cloud Terminal Architecture

Only hypervisor has access to
user’s credentials: the user doesn’t
know their own passwords

Cloud Terminal Architecture

User signals Hypervisor to begin
a secure session using a specific
hardware keystroke combination
(“Secure Attention Key”)

Cloud Terminal Architecture

Upon this request, a “thin client” UI runs
in the hypervisor context (= trusted)

Cloud Terminal Architecture

It’s locked down to only talk to services
previously registered with the Hypervisor –
user can’t be phished

Cloud Terminal Architecture

After selecting which service to interact with
(e.g., user’s bank), Hypervisor interacts using
untrusted host OS for networking & storage

Cloud Terminal Architecture

Doing so reduces TCB

Cloud Terminal Architecture

End-to-end encryption obviates need
to trust host OS; only threat is DoS

Cloud Terminal Architecture

Hypervisor ensures authenticity of remote
service by (correctly) validating TLS certificate

Cloud Terminal Architecture

Hypervisor authenticates user to
service using password in key store

Cloud Terminal Architecture

Remote service (e.g., user’s bank) renders
interaction UI locally using kiosk software

Cloud Terminal Architecture

UI is presented to user using VNC-
style low-level frame buffer protocol

Cloud Terminal Architecture

Rendered directly into video
hardware by RUI client + hypervisor

Cloud Terminal Architecture

Malware has no capability
to observe what’s displayed

Cloud Terminal Architecture

User interacts using physical
hardware events mediated by
hypervisor directly to RUI client

Cloud Terminal Architecture

Malware has no opportunity
to influence interaction

Cloud Terminal Architecture

Tackling Transaction Generators

• Desired properties:
– Compatible w/ existing legacy OS’s

• They run in VMs controlled by hypervisor
– Can run general web applications

• Anything that remote site can render into VNC-style
framebuffer protocol

– No need to trust host OS
• Hypervisor provides strong isolation

– Small TCB: attestable via TPM
• Working implementation: 22 KLOC

Architectural Elements?
• Abstractions:

– Interactions via “dumb” separate terminal
• Placement of functionality:

– Move rendering into controlled environment
– Add trusted hypervisor w/ local secrets/smarts
– Require interactions to come from physical hardware
– Use E2E principle to leverage untrustworthy code

• State:
– Isolated to trusted component

• Naming:
– Use existing PKI system + TPM

Imprinting

Device Authentication: IOT

For IOT device + home controller, want
secure, impermanent associations.

Impermanent: so you can sell your device
but a thief cannot.

Resurrecting Duckling

Imprinting on Mother:
Device shares key on 1st contact with controller

Metempsychosis:
Upon death, soul progresses to a new body

Reverse metempsychosis:
Upon death, new soul can enter the body

Resistance to assassination:
Only mother can kill her ducklings

Escrowed seppuku:
Manufacturer can kill too

Thief can’t “kill” device
⇒ no utility for anyone

who buys it from them

https://www.citrix.com/blogs/2015/04/20/resurrecting-duckling-a-model-for-securing-iot-devices/

Imprinting in Other Contexts

• What is SSH’s PKI model?
– It doesn’t have one: Leap-of-Faith

• Pros:
– Ease of deployment

• Cons:
– Security properties require users to non-satisfice

– No revocation model
– Disaster if attacker gets there first

Persistent Ungrounded Identity

• Idea: systems generate (unanchored!) public key
and consistently include it w/ (signed) messages
– Provides recipient a lever for “this is the same entity I

talked with previously” …
– … even though actual identity (“persona”) not known

“Assurance through continuity”

Persistent Ungrounded Identity

• Idea: systems generate (unanchored!) public key
and consistently include it w/ (signed) messages
– Provides recipient a lever for “this is the same entity I

talked with previously” …
– … even though actual identity (“persona”) not known

• E.g.: consistently sign your email/texts
– Recipient can associate reputation w/ each persona,

use them for whitelisting
– User can migrate persona to additional systems

• E.g.: use for SBGP instead of a PKI
– Game theory result: deployment gains a network effect

Persistent Ungrounded Identity

• Idea: systems generate (unanchored!) public key
and consistently include it w/ (signed) messages
– Provides recipient a lever for “this is the same entity I

talked with previously” …
– … even though actual identity (“persona”) not known

• E.g.: consistently sign your email/texts
– Recipient can associate reputation w/ each persona,

use them for whitelisting
– User can migrate persona to additional systems

• E.g.: use for SBGP instead of a PKI
– Game theory result: deployment gains a network effect

Issues?
Key compromise is a disaster
No apparent handle for revocation

Multi-Party Identities

Cashier-as-a-Service (CAAS)

Abstract Ecommerce workflow:
1. Shopper surfs Merchant’s site

2. Shopper sends over …/place_order.html
3. Merchant sends back redir. to CAAS.com

4. Shopper interacts with CAAS
5. CAAS interacts with Merchant

6. CAAS redirects shopper back to Merchant

S⟶M: place_order.html
[M inserts ID and price into database; status=PENDING]

M⟶S⟶C: get_payment?orderID=X&price=Y
[C records payment info, generates transaction # T]

C⟶S⟶M: finish?transID=T
[M contacts C for identifer X associated w/ T]
[M retrieves orderID=X from database;

if order status = PENDING→ mark as PAID; ship X]

CAAS Attack #1 ?

Note: we view Merchant and Cashier
as trustworthy. The Shopper, OTOH …

S⟶M: place_order.html
[M inserts ID and price into database; status=PENDING]

M⟶S⟶C: get_payment?orderID=X&price=Y
[C records payment info, generates transaction # T]

C⟶S⟶M: finish?transID=T
[M contacts C for identifer X associated w/ T]
[M retrieves orderID=X from database;

if order status = PENDING→ mark as PAID; ship X]

CAAS Attack #1 !

S⟶M: place_order.html
[M inserts ID and price into database; status=PENDING]

M⟶S⟶C: get_payment?orderID=X&price=Y
[C records payment info, generates transaction # T]

C⟶S⟶M: finish?transID=T
[M contacts C for identifer X associated w/ T]
[M retrieves orderID=X from database;

if order status = PENDING→ mark as PAID; ship X]

CAAS Scheme #2 ?

S⟶M: place_order.html
[M inserts ID and price into database; status=PENDING]

M⟶S⟶C: get_payment?SIGNM(ID=X,price=Y)
[C verifies signature; records payment info, generates # T]

C⟶S⟶M: finish?SIGNC(ID=X,price=Y,PAID)
[M verifies signature and PAID is indicated]
[M retrieves orderID=X from database;

if order status = PENDING→ mark as PAID; ship X]

CAAS Attack #2 ?

S⟶M: place_order.html
[M inserts ID and price into database; status=PENDING]

M⟶S⟶C: get_payment?SIGNM'(ID=X,price=Y)
[C verifies signature; records payment info, generates # T]

C⟶S⟶M: finish?SIGNC(ID=X,price=Y,PAID)
[M verifies signature and PAID is indicated]
[M retrieves orderID=X from database;

if order status = PENDING→ mark as PAID; ship X]

CAAS Attack #2 !

Shopper colludes with another merchant M'
to get a signature on same identifier X for
price Y … without having to ultimately pay

S⟶M: place_order.html
[M inserts ID and price into database; status=PENDING]

M⟶S⟶C: get_payment?
SIGNM(ID=X,price=Y,merch=M)

[C verifies signature; records payment info, generates # T]

C⟶S⟶M: finish?
SIGNC(ID=X,price=Y,merch=M,PAID)

[M verifies signature and PAID is indicated, etc.]
[M retrieves orderID=X from database;

if order status = PENDING→ mark as PAID; ship X]

Fix for CAAS Attack #2

S⟶M: place_order.html
[M inserts ID and price into database; status=PENDING]

M⟶S⟶C: get_payment?
SIGNM(ID=X,price=Y,merch=M,shop=S)

[C verifies signature; records payment info, generates # T]

C⟶S⟶M: finish?
SIGNC(ID=X,price=Y,merch=M,shop=S,PAID)

[M verifies signature and PAID is indicated, etc.]
[M retrieves orderID=X from database;

if order status = PENDING→ mark as PAID; ship X]

Better Fix for CAAS Attack #2

Principle: always sign
all the information that
went into a decision

