Lecture Outline

e Announcements:

— Homework for next week out by this evening

— Guest lecture a week from Friday
« Bill Marczak on Abusive Surveillance

» Today: broader notions relating to authentication
— Architecting to resist subverted clients
— Imprinting
— Multi-party identities (Ecommerce, web advertising)
— Bot-or-Not (CAPTCHAS)

Architecting to
Resist Subverted Clients

Threats?

Sniffing, MITM (network; app-level relay)
= Theft of password and/or authenticator
3rd-party manipulation of automation

— E.g. CSRF (browser fetching of images)

— E.g. XSS (browser execution of JS replies)

Password security

— Blind guessing / bruteforcing

— Reuse (breaches)

— Phishing

Compromised client: hijacking

Tackling Transaction Generators?

 How about using a separate system?
— Very inconvenient

* Desired properties:
— Compatible w/ existing legacy OS’s
— Can run general web applications
— No need to trust host OS
— Small TCB: attestable via TPM

Cloud Terminal Architecture

D w
Remote Ul

Client
oS (e.g. kiosk Service

i i browser)
= , . RUI

ypervisor — —
| TLS Server

Key User
Store DB

k Input Devices /

Cloud Terminal Architecture

Display

D w
Remote Ul

Client
OS (e.g. kiosk Service

I 1 browser)
RUI

Hypervisor - > Server —

TLS
e

g -Key User
Input Devices Store DB

Cloud Terminal Architecture

Display

D w
Remote Ul

Client
OS (e.g. kiosk Service

RUI

i i browser)
Hypervisor > ¥ —
| a TLS Server

Key User
Store DB

Input Devices

J

Cloud Terminal Architecture

Display
—
D w
Client Remote Ul
0s (e.g. kiosk Service
! r browser)
H) - o RUI
ypervisor - -
TLS Server
o e ——
Input Devices Store DB

Cloud Terminal Architecture

Display
——

D |~

0s Client Remote Ul

(e.g. kiosk Service
! r browser)
Hypervisor - > aLl
TLS Server

T

Key User

Input Devices Store DB

Cloud Terminal Architecture

Display
O\
O
Client Remote Ul
OS (e.g. kiosk Service
I b — browser)
" _ - . RUI
ypervisor B
- _ Sel:ver
-~
Key User

Input Devices Store DB

Cloud Terminal Architecture

Display
O\
D
Client Remote Ul

oS (e.g. kiosk Service
I b browser)

” . - . RUI

ypervisor B
- LS Sel:ver

o
Input Devices Store DB

Cloud Terminal Architecture

Display
O\
D |~
Client Remote Ul
0s (e.g. kiosk Service
! ——1 browser)
H ! - o RUI
ypervisor -

. LS Sel:ver

R —— ./ (o ——

Input Devices Store DB

Cloud Terminal Architecture

Display

Remote Ul
(e.g. kiosk
browser)

Service

Input Devices

D w~
0S Client
|i| — . RUI
ypervisor
- TLS S
R T
Store DB

Cloud Terminal Architecture

Display

D w
Remote Ul

Client
oS (e.g. kiosk Service

I 1 browser)

= _ - . RUI

ypervisor —
- TLS S

K S -Key User
Input Devices Store DB

Cloud Terminal Architecture

Display
@
Client Remote Ul
oS (e.g. kiosk Service
I 1 browser)
" _ - . RUI
ypervisor Server B
TLS
-~ /

K S -Key User
Input Devices Store DB

Cloud Terminal Architecture

D w
Remote Ul

Client

oS (e.g. kiosk Service
I 1 | browser)
N . RUI
ypervisor 1 B
TLS Se:ver J

-
.User
Input Devices Store DB

Cloud Terminal Architecture

R
D |
Client Remote Ul
0S (e.g. kiosk Service
I 1 | browser
. _j _| RUI)
ypervisor S 1 B
: TLS erlver)

\ -Key -User
Input Devices Store DB

Cloud Terminal Architecture

O\
@

Client Remote Ul
oS (e.g. kiosk Service

I ol s browser)

" . - . RUI
ypervisor B B
TLS Server

\ -Key User
Input Devices Store DB

Cloud Terminal Architecture

Display

R
D |
Client Remote Ul
0S (e.g. kiosk Service

I —) — | browser)
Hypervisor - > s ¥ —
, TLS |

Store DB

Input Devices

J

Cloud Terminal Architecture

O\
@

Client Remote Ul
oS (e.g. kiosk Service

I ol s browser)

" . - . RUI
ypervisor B B
TLS Server

\ -Key User
Input Devices Store DB

Tackling Transaction Generators

* Desired properties:
— Compatible w/ existing legacy OS’s
* They run in VMs controlled by hypervisor

— Can run general web applications

* Anything that remote site can render into VNC-style
framebuffer protocol

— No need to trust host OS
» Hypervisor provides strong isolation

— Small TCB: attestable via TPM
* Working implementation: 22 KLOC

Architectural Elements?

Abstractions:

— Interactions via “dumb” separate terminal
Placement of functionality:

— Move rendering into controlled environment

— Add trusted hypervisor w/ local secrets/smarts
— Require interactions to come from physical hardware

— Use to leverage untrustworthy code
State:

— |solated to trusted component

Naming:

— Use existing PKI system + TPM

Imprinting

Device Authentication: IOT

For IOT device + home controller, want
secure, impermanent associations.

Impermanent: so you can sell your device
but a thief cannot.

Resurrecting Duckling

Imprinting on Mother:
Device shares key on 15t contact with controller

Metempsychosis:
Upon death, soul progresses to a new body

Reverse metempsychosis:
Upon death, new soul can enter the body

Resistance to assassination:
Only mother can kill her ducklings

Escrowed seppuku:
Manufacturer can Kill too

5cd50f9b-e1ad-472b-ac70-0a8e09ee1930

J | Resurrecting , -
Duckling : f
Model -
imprintable imprinted
(unborn) imprinte

(alive)

Two state principal — the ducking can
be in one of 2 states; imprintable and
imprinted. In the imprintable state,
anyone can claim to be the duckling’s
mother. In the imprinted state, the
duckling only obeys its mother.
Imprinting principal — imprinting
happens when the mother duck sends an
imprinting key to the duckling. This must
be done over a channel that protects
confidentiality and integrity of the key.
Death principal — the transition from
imprinted to imprintable can only occur in
specific circumstances defined by the
model:

» death by order of the mother duck

(default)
» death after a predetermined interval
» death after the completion of a
specific transaction

Assassination principal — The duckling
must be constructed in a way that it is
unfeasible for an attacker to force it into
the imprintable state by means other
than those stated in the death principal.

https://www.citrix.com/blogs/2015/04/20/resurrecting-duckling-a-model-for-securing-iot-devices/

Imprinting in Other Contexts

 What is SSH’s PKI model?

— |t doesn’t have one: Leap-of-Faith
* Pros:

— Ease of deployment
« Cons:

— Security properties require users to non-satisfice

The authenticity of host 'diablo.icir.org (192.150.187.59)'
can't be established.

ECDSA key fingerprint is SHA256:uv]IWTj1M5c74D5gp62GMeCk2ccB
ILukf91zal1S2z18k.

Are you sure you want to continue connecting (yes/no)?
— No revocation model
— Disaster if attacker gets there first

Persistent Ungrounded Identity

+ |dea: systems generate (unanchored!) public key
and consistently include it w/ (signed) messages

— Provides recipient a lever for “this is the same entity |
talked with previously” ...

— ... even though actual identity (“persona”) not known

Persistent Ungrounded Identity

* |dea: systems generate (unanchored!) public key
and consistently include it w/ (sighed) messages

— Provides recipient a lever for “this is the same entity |
talked with previously” ...

— ... even though actual identity (“persona”) not known

* E.g.: consistently sign your email/texts

— Recipient can associate reputation w/ each persona,
use them for whitelisting

— User can migrate persona to additional systems

+ E.g.: use for SBGP instead of a PKI
— Game theory result: deployment gains a network effect

Persistent Ungrounded Identity

+ |dea: systems generate (unanchored!) public key
and consistently include it w/ (signed) messages

— Provides recipient a lever for “this is the same entity |
talked s ' :

— ... ev wn
« E.g.:cC
— Reci na,

use them for whitelisting
— User can migrate persona to additional systems

+ E.g.: use for SBGP instead of a PKI
— Game theory result: deployment gains a network effect

Multi-Party Identities

Cashier-as-a-Service (CAAS)

Abstract Ecommerce workflow:
1. Shopper surfs Merchant's site

2. Shopper sends over .../place order.html
3. Merchant sends back redir. to CAAS.com

4. Shopper interacts with CAAS
5. CAAS interacts with Merchant

6. CAAS redirects shopper back to Merchant

CAAS Attack #1 ?

S—M: place order.html
(M inserts ID and price into database; status=PENDING]

M—S—C: get payment?orderID=X&price=Y
[C records payment info, generates transaction # T

C—S—M: finish?transID=T
[M contacts C for identifer X associated w/ T]
[M retrieves orderID=X from database;
if order status = PENDING — mark as PAID; ship X]

Note: we view Merchant and Cashier
as trustworthy. The Shopper, OTOH ...

CAAS Attack #1 !

S—M: place order.html
(M inserts ID and price into database; status=PENDING]

M >S®C: get_payment?orderID=X&price=€Y>
[C records payment info, generates transaction # T

C—S—M: finish?transID=T
[M contacts C for identifer X associated w/ T]
[M retrieves orderID=X from database;
if order status = PENDING — mark as PAID; ship X]

CAAS Scheme #2 ?

S—M: place order.html
(M inserts ID and price into database; status=PENDING]

M >S®C: get_payment?orderID=X&price=€Y>
[C records payment info, generates transaction # T

C—S—M: finish?transID=T
[M contacts C for identifer X associated w/ T]
[M retrieves orderID=X from database;
if order status = PENDING — mark as PAID; ship X]

CAAS Attack #2 ?

S—M: place order.html
(M inserts ID and price into database; status=PENDING]

M—S—C: get payment?SIGN,,(ID=X,price=Y)
[C verifies signature; records payment info, generates # T

C—S—M: finish?SIGN.(ID=X,price=Y,PAID)
[M verifies signature and PAID is indicated]
[M retrieves orderID=X from database;
if order status = PENDING — mark as PAID; ship X]

CAAS Attack #2 !

S—M: place order.html
(M inserts ID and price into database; status=PENDING]

M—S—C: get_payment?SIG@(ID=X,price=Y)
[C verifies signature; records payment info, generates # T

C—S—M: finish?SIGN.(ID=X,price=Y,PAID)
[M verifies signature and PAID is indicated]
[M retrieves orderID=X from database;

if or

hip X]

Fix for CAAS Attack #2

S—M: place order.html
[M inserts ID and price into database; status=PENDING]

M—S—C: get payment?
SIGN,(ID=X,price=Y,merch=M)
|C verifies signature; records payment info, generates # T |

C—S—M: finish?
SIGN-(ID=X,price=Y,merch=M,PAID)
[M verifies signature and PAID is indicated, etc.]
[M retrieves orderID=X from database;
if order status = PENDING — mark as PAID; ship X]

Better Fix for CAAS Attack #2

S—M: place order.html
[M inserts ID and price into databas

M—S—C: get payment?
SIGN,,(ID=X,price=Y,merch=M ,6 shop=S)
[C verifies signature; records payment info, generates # T

C—S—M: finish?
SIGN.(ID=X,price=Y,merch=M,6 shop=S,PAID)
[M verifies signature and PAID is indicated, etc.]
[M retrieves orderID=X from database;
if order status = PENDING — mark as PAID; ship X]

