
http.log | HTTP request/reply details

FIELD TYPE DESCRIPTION
ts time Timestamp of the HTTP request

uid & id Underlying connection info > See conn.log

trans_depth count Pipelined depth into the connection

method string HTTP Request verb: GET, POST, HEAD, etc

host string Value of the Host header

uri string URI used in the request

referrer string Value of the “Referer” header

user_agent string Value of the User-Agent header

request_body_len count Uncompressed content size of Orig data

response_body_len count Uncompressed content size of Resp data

status_code count Status code returned by the server

status_msg string Status message returned by the server

info_code count Last seen 1xx info reply code by server

info_msg string Last seen 1xx info reply message by server

tags set Indicators of various attributes discovered

username string Username if basic-auth is performed

password string Password if basic-auth is performed

proxied set Headers indicative of a proxied request

orig_fuids vector File unique IDs from Orig

orig_filenames vector File names from Orig

orig_mime_types vector File types from Orig

resp_fuids vector File unique IDs from Resp

resp_filenames vector File names from Resp

resp_mime_types vector File types from Resp

client_header
_names1 vector The names of HTTP headers sent by Orig

server_header
_names1 vector The names of HTTP headers sent by Resp

cookie_vars2 vector Variable names extracted from cookies

uri_vars2 vector Variable names extracted from the URI

1If policy/protocols/http/header-names.bro is loaded
2If policy/protocols/http/var-extraction-uri.bro is loaded

conn.log | IP, TCP, UDP, ICMP connection details

FIELD TYPE DESCRIPTION
ts time Timestamp of the first packet

uid string Unique ID of the connection

id.orig_h addr Originating endpoint’s IP address (Orig)

id.orig_p port Originating endpoint’s TCP/UDP port
(or ICMP code)

id.resp_h addr Responding endpoint’s IP address (Resp)

id.resp_p port Responding endpoint’s TCP/UDP port
(or ICMP code)

proto proto Transport layer protocol of connection

service string Detected application protocol, if any

duration interval Connection length

orig_bytes count Orig payload bytes; from sequence
numbers if TCP

resp_bytes count Resp payload bytes; from sequence
numbers if TCP

conn_state string Connection state (see conn.log > conn_state)

local_orig bool Is Orig in Site::local_nets?

local_resp bool Is Resp in Site::local_nets?

missed_bytes count Number of bytes missing due to content gaps

history string Connection state history
(see conn.log > history)

orig_pkts count Number of Orig packets

orig_ip_bytes count Number of Orig IP bytes
(via IP total_length header field)

resp_pkts count Number of Resp packets

resp_ip_bytes count Number of Resp IP bytes
(via IP total_length header field)

tunnel_parents set If tunneled, connection UID
of encapsulating parent(s)

orig_I2_addr string Link-layer address of the originator

resp_I2_addr string Link-layer address of the responder

vlan int The outer VLAN for this connection

inner_vlan int The inner VLAN for this connection

ssl.log | SSL handshakes

FIELD TYPE DESCRIPTION
ts time Timestamp when SSL connection detected

uid & id Underlying connection info > See conn.log

version string SSL version that the server offered

cipher string SSL cipher suite that the server chose

curve string Elliptic curve server chose if using ECDH/
ECDHE

server_name string Value of Server Name Indicator SSL extension

session_id string Session ID offered by client for session
resumption

resumed bool Flag that indicates the session was resumed

last_alert string Last alert that was seen during the connection

next_protocol string Next protocol server chose using application
layer next protocol extension, if seen

established bool Was this connection established successfully?

cert_chain1 vector Chain of certificates offered by server

cert_chain_fuids1 vector File UIDs for certs in cert_chain

client_cert_chain1 vector Chain of certificates offered by client

client_cert_chain_
fuids1 vector File UIDs for certs in client_cert_chain

subject1 string Subject of the X.509 cert offered by server

issuer1 string Subject of the signer of the server cert

client_subject1 string Subject of the X.509 cert offered by client

client_issuer1 string Subject of the signer of the client cert

validation_status2 string Certificate validation result for this handshake

ocsp_status2 string OCSP validation result for this handshake

ocsp_response2 string OCSP response as a string

notary3
Cert
Notary::
Response

A response from the ICSI certificate notary

1If base/protocols/ssl/files.bro is loaded
2If policy/protocols/ssl/validate-certs.bro is loaded
3If policy/protocols/ssl/notary.bro is loaded

dns.log | DNS query/response details

FIELD TYPE DESCRIPTION
ts time Timestamp of the DNS request

uid & id Underlying connection info > See conn.log

proto proto Protocol of DNS transaction—TCP or UDP

trans_id count 16 bit identifier assigned by DNS client;
responses match

rtt interval Round trip time for the query and response

query string Domain name subject of the query

qclass count Value specifying the query class

qclass_name string Descriptive name of the query class
(e.g., C_INTERNET)

qtype count Value specifying the query type

qtype_name string Descriptive name of the query type
(e.g., A, AAAA, PTR)

rcode count Response code value in the DNS response

rcode_name string Descriptive name of response code
(e.g., NXDOMAIN, NODATA)

AA bool Authoritative answer:
T = server is authoritative for the query

TC bool Truncation: T = the message was truncated

RD bool Recursion desired:
T = recursive lookup of query requested

RA bool Recursion available:
T = server supports recursive queries

Z count Reserved field, should be zero in all queries
and responses

answers vector List of resource descriptions in answer
to the query

TTLs vector Caching intervals of the answers

rejected bool Whether DNS query was rejected by server

auth1 set Authoritative responses for the query

addl1 set Additional responses for the query

1If policy/protocols/dns/auth-addl.bro is loaded

overflow_bytes count Out-of-sequence bytes in the stream due
to overflow

timedout bool If the file analysis timed out at least once

parent_fuid string Container file ID this was extracted from

md5/sha1 string MD5/SHA1 hash of the file

extracted string Local filename of extracted files, if enabled

entropy double Information density of the file contents

extracted_cutoff bool Set to true if the file being extracted was cut
off so the whole file was not logged

extracted_size count The number of bytes extracted to disk

files.log | File analysis results

FIELD TYPE DESCRIPTION
ts time Timestamp when file was first seen

fuid string Unique identifier for a single file

tx_hosts set Host(s) that sourced the data

rx_hosts set Host(s) that received the data

conn_uids set Connection UID(s) over which file transferred

source string An identification of the source of the file data

depth count Depth of file related to source
(e.g., HTTP request depth)

analyzers set Set of analyzers attached during file analysis

mime_type string File type, as determined by Bro’s signatures

filename string Filename, if available from source analyzer

duration interval The duration that the file was analyzed for

local_orig bool Did the data originate locally?

is_orig bool Was the file sent by the Originator?

seen_bytes count Number of bytes provided to file analysis engine

total_bytes count Total number of bytes that should
comprise the file

missing_bytes count Number of bytes in file stream missed

dhcp.log | DHCP lease activity

FIELD TYPE DESCRIPTION
ts time Timestamp of the DHCP lease request

uid & id Underlying connection info > See conn.log

mac string Client’s hardware address

assigned_ip addr Client’s actual assigned IP address

lease_time interval IP address lease time

trans_id count Identifier assigned by client; responses match

dce_rpc.log | Details on DCE/RPC messages

FIELD TYPE DESCRIPTION
ts time Timestamp for when the event happened

uid string Unique ID for the connection

id conn_id The connection’s 4-tuple of endpoint
addresses/ports

rtt interval
Round trip time from the request to the
response (if either the request or response
wasn’t seen, this will be null)

named_pipe string Remote pipe name

endpoint string Endpoint name looked up from the uuid

operation string Operation seen in the call

ssh.log | SSH handshakes

FIELD TYPE DESCRIPTION
ts time Timestamp when SSH conn was detected

uid & id Underlying connection info > See conn.log

version count SSH major version (1 or 2)

auth_success bool Did the auth succeed? Unset if undetermined

direction direction Inbound or outbound connection

client string Software string from the client

server string Software string from the server

cipher_alg string The negotiated encryption algorithm

mac_alg string The negotiated MAC (signing) algorithm

compression_alg string The negotiated compression algorithm

kex_alg string The negotiated key exchange algorithm

host_key_alg string The server’s host key algorithm

host_key string The server’s host key fingerprint

remote_location1 geo_
location GeoIP data for the “remote” endpoint

1If policy/protocols/ssh/geo-data.bro is loaded

smtp.log | SMTP transactions

FIELD TYPE DESCRIPTION
ts time Timestamp when message was first seen

uid & id Underlying connection info > See conn.log

trans_depth count Transaction depth if there are multiple msgs

helo string Contents of the HELO header

mailfrom string Contents of the MAIL FROM header

rcptto set Contents of the RCPT TO header

date string Contents of the DATE header

from string Contents of the FROM header

to set Contents of the TO header

cc set Contents of the CC header

reply_to string Contents of the ReplyTo header

msg_id string Contents of the MsgID header

in_reply_to string Contents of the In-Reply-To header

subject string Contents of the Subject header

x_originating_ip addr Contents of the X-Originating-IP header

first_received string Contents of the first Received header

second_received string Contents of the second Received header

last_reply string Last server to client message

path vector Message transmission path, from headers

user_agent string Value of the client User-Agent header

tls bool Indicates the connection switched to TLS

fuids vector File unique IDs seen attached to message

is_webmail1 bool If the message was sent via webmail
1If policy/protocols/smtp/software.bro is loaded

smb_mapping.log | SMB mappings

FIELD TYPE DESCRIPTION
ts time Time when the tree was mapped

uid string Unique ID of the connection the tree
was mapped over

id conn_id ID of the connection the tree was
mapped over

path string Name of the tree path

service string The type of resource of the tree
(disk share, printer share, named pipe, etc)

native_file_system string File system of the tree

share_type string
If this is SMB2, a share type will be included.
For SMB1, the type of share will be deduced
and included as well.

modbus.log | PLC requests (ICS)

FIELD TYPE DESCRIPTION
ts time Timestamp of the PLC request

uid & id Underlying connection info > See conn.log

func string Function message that was sent

exception string Exception if there was a failure

syslog.log | Syslog messages

FIELD TYPE DESCRIPTION
ts time Timestamp when syslog message was seen

uid & id Underlying connection info > See conn.log

proto
trans-
port_
proto

Protocol over which the message was seen

facility string Syslog facility for the message

severity string Syslog severity for the message

message string The plain text message

capture_loss.log |Packet loss estimate

FIELD TYPE DESCRIPTION
ts time Timestamp of the end of the measurement

ts_delta interval Time difference from previous
measurement

peer string Name of the Bro instance reporting loss

gaps count ACKs seen without seeing the data being
ACKed

acks count Total number of TCP ACKs

percent_loss double Estimate of loss: gaps/acks

tunnel.log | Details of encapsulating tunnels

FIELD TYPE DESCRIPTION
ts time Timestamp tunnel was detected

uid & id Underlying connection info > See conn.log

tunnel_type string The type of tunnel (e.g., Teredo, IP)

action string The activity that occurred (discovered, closed)

notice.log | Logged notices

FIELD TYPE DESCRIPTION
ts time Timestamp of the notice

uid & id Underlying connection info > See conn.log

fuid string File unique ID, if this notice relates to a file

file_mime_type string File type, as determined by Bro’s signatures

file_desc string Additional context for the file, if available

proto proto Transport protocol

note string The type of the notice (e.g. SSL::Weak_Key)

msg string Human readable message for the notice

sub string Sub-message for the notice

src addr Source address

dst addr Destination address

p port Associated port, if any

n count Associated count or status code

peer_descr string Name of the node that raised this notice

actions set Actions applied to this notice

suppress_for interval Length of time dupes should be suppressed

dropped1 bool If the src IP was blocked

remote_
location2

geo_loca-
tion GeoIP data about the hosts involved

1If base/files/hash/main.bro is loaded
2If base/files/extract/main.bro is loaded

kerberos.log | Kerberos authentication

FIELD TYPE DESCRIPTION
ts time Timestamp for when activity occurred

uid & id Underlying connection info > See conn.log

request_type string Authentication Service
or Ticket Granting Service

client string Client

service string Service

success bool Request result

error_code count Error code

error_msg string Error message

from time Ticket valid from

till time Ticket valid until

cipher string Ticket encryption type

forwardable bool Forwardable ticket requested

renewable bool Renewable ticket requested

client_cert_subject string Subject of X.509 cert offered by client
for PKINIT

client_cert_fuid string File UID for X.509 client cert for PKINIT auth

server_cert_
subject string Subject of X.509 cert offered by server

for PKINIT

server_cert_fuid string File UID for X.509 server cert for PKINIT auth

rdp.log | Remote Desktop Protocol (RDP)

FIELD TYPE DESCRIPTION
ts time Timestamp for when the event happened

uid string Unique ID for the connection

id conn_id The connection’s 4-tuple of endpoint
addresses/ports

cookie string Cookie value used by client machine
(username)

result string
Status result for the connection. It’s a mix
between RDP negotiation failure messages
and GCC server create response messages.

security_protocol string Security protocol chosen by server

keyboard_layout string Keyboard layout (language) of client machine

client_build string RDP client version used by client machine

client_name string Name of client machine

client_dig_
product_id string Product ID of client machine

desktop_width count Desktop width of client machine

desktop_height count Desktop height of client machine

requested_color_
depth string The color depth requested by the client

cert_type string
If the connection is being encrypted with
native RDP encryption, this is the type of
cert being used

cert_count count The number of certs seen: X.509 can
transfer an entire certificate chain

cert_permanent bool Indicates if the provided certificate or
certificate chain is permanent or temporary

encryption_level string Encryption level of the connection

encryption_
method string Encryption method of the connection

ssl1 bool Flag the connection if it was seen over SSL
1Present if policy/protocols/rdp/indicate_ssl.bro is loaded

software.log | Software framework IDs

FIELD TYPE DESCRIPTION
ts time Timestamp of the first software detection

host addr IP address running the software

host_p port Port on which the software is running
(for servers)

software_type Software:
:Type Type of software (e.g. HTTP::SERVER)

name string Name of the software

version Software:
:Version Version of the software

unparsed_version string The full, unparsed version of the software

url1 string Root URL where the software was found
1 If policy/protocols/http/detect-webapps.bro is loaded

x509.log | SSL certificate details

FIELD TYPE DESCRIPTION
ts time Time when the cert was seen

id string File unique ID

certificate.version count Cert version number

certificate.serial string Cert serial number

certificate.subject string Cert subject

certificate.issuer string Cert issuer

certificate.not_
valid_before time Time the cert is valid from

certificate.not_
valid_after time Time the cert is valid until

certificate.key_alg string Name of the key algorithm

certificate.sig_alg string Name of the signature algorithm

certificate.
key_type string Key type (RSA, DSA or EC)

certificate.key_
length count Key length, in bits

certificate.
exponent string Exponent, if RSA

certificate.curve string Curve, if EC

san.dns string_
vec

List of DNS entries in Subject Alternative
Name (SAN)

san.uri string_
vec List of URI entries in SAN

san.email string_
vec List of email entries in SAN

san.ip addr_vec List of IP entries in SAN

basic_constraints.
ca bool CA flag set?

basic_constraints.
path_len count Maximum path length
mysql.log | MySQL

FIELD TYPE DESCRIPTION
ts time Timestamp for when the event happened

uid & id Underlying connection info > See conn.log

cmd string The command that was issued

arg string The argument issued to the command

success bool Server replies command succeeded?

rows count The number of affected rows, if any

response string Server message, if any

snmp.log | SNMP messages

FIELD TYPE DESCRIPTION

ts time Timestamp when the message was
first seen

uid & id Underlying connection info > See conn.log

duration interval Time between the first and last seen packet

version string SNMP version (v1, v2c, v3)

community string The community string of the first SNMP
packet

get_requests count Number of GetRequest/GetNextRequest
packets

get_bulk_requests count Number of GetBulkRequest packets

get_responses count Number of GetResponse/Response packets

set_requests count Number of SetRequest packets

display_string string A system description of Resp

up_since time Timestamp that Resp has been up since

radius.log | RADIUS authentication attempts

FIELD TYPE DESCRIPTION
ts time Timestamp of the authentication attempt

uid & id Underlying connection info > See conn.log

username string The username of the user attempting
to authenticate

mac string The MAC address of the client
(e.g., for wireless)

remote_ip addr The IP address of the client (e.g., for VPN)

connect_info string Additional connect information, if available

result string Whether the attempt succeeded or failed

sip.log | SIP analysis

FIELD TYPE DESCRIPTION
ts time Timestamp when the request happened

uid & id Underlying connection info > See conn.log

trans_depth count Pipelined depth into request/response
transaction connection

method string Verb used in the SIP request (INVITE, etc)

uri string URI used in the request

date string Contents of Date: header from client

request_from string Contents of request From: header1

request_to string Contents of To: header

response_from string Contents of response From: header1

response_to string Contents of response To: header

reply_to string Contents of Reply-To: header

call_id string Contents of Call-ID: header from client

seq string Contents of CSeq: header from client

subject string Contents of Subject: header from client

request_path vector Client message transmission path,
extracted from headers

response_path vector Server message transmission path,
extracted from headers

user_agent string Contents of User-Agent: header from client

status_code count Status code returned by the server

status_msg string Status message returned by the server

warning string Contents of Warning: header

request_body_len count Content-Length: header from client

response_body_
len count Content-Length: header from server

content_type string Content-Type: header from server
1The tag=value that’s usually appended to the sender is stripped off and not logged

dnp3.log | Distributed Network Protocol (ICS)

FIELD TYPE DESCRIPTION
ts time Timestamp of the DNP3 request

uid & id Underlying connection info > See conn.log

fc_request string The name of the request function message

fc_reply string The name of the reply function message

iin count Response’s “internal indication number”

intel.log | Hits on indicators from intel framework

FIELD TYPE DESCRIPTION
ts time Timestamp of the intelligence hit

uid & id Underlying connection info > See conn.log

fuid string The UID for a file associated with this hit,
if any

file_mime_type string A mime type if the hit is related to a file

file_desc string Additional context for file, if available

seen.indicator string The intelligence indicator

seen.indicator
_type string The type of data the indicator represents

seen.where string Where the data was discovered

seen.node string Name of the node that discovered the match

sources set Sources which supplied data for this match

smb_files.log | Details on SMB files

FIELD TYPE DESCRIPTION
ts time Time when the file was first discovered

uid string Unique ID of the connection the file
was sent over

id conn_id ID of the connection the file was sent over

fuid string Unique ID of the file

action SMB::
Action Action this log record represents

path string Path pulled from the tree this file was
transferred to or from

name string Filename if one was seen

size count Total size of the file

prev_name string If the rename action was seen, this will be
the file’s previous name

times SMB::
MACTimes

A sequence of timestamps for the file’s
MAC times

Some Companies/Insts. Using Zeek

SOC operations overview (Microsoft)

HTTPS Connection (SSL / TLS)

• Browser (client) connects via
TCP to Amazon’s HTTPS server

• Client picks 224-bit random
number RB, sends over list of
crypto protocols it supports

• Server picks 224-bit random
number RS, selects protocols to
use for this session

• Server sends over its certificate

• (all of this is in the clear)

• Client now validates cert

SYN

SYN ACK

ACK

Browser Amazon
Server

Hello. My rnd # = RB. I support

(TLS+RSA+AES256+SHA3) or

(SSL+RSA+AES128+SHA256) or …

My rnd # = RS. Let’s use

TLS+RSA+AES256+SHA3

Here’s my cert

~2-3 K
B of d

ata

HTTPS Connection (SSL / TLS), con’t
• For RSA, browser constructs long

(368 bits) “Premaster Secret” PS
• Browser sends PS encrypted using

Amazon’s public RSA key KAmazon
• Using PS, RB, and RS, browser &

server derive symm. cipher keys
(CB, CS) & MAC integrity keys (IB, IS)
– One pair to use in each direction

Browser

Here’s my cert

~2-3 K
B of d

ata

{PS}KAmazon
PS

PS

These seed a cryptographically strong
pseudo-random number generator (PRNG).

Then browser & server produce CB, CS, etc.,
by making repeated calls to the PRNG.

Amazon
Server

HTTPS Connection (SSL / TLS), con’t
• For RSA, browser constructs long

(368 bits) “Premaster Secret” PS
• Browser sends PS encrypted using

Amazon’s public RSA key KAmazon
• Using PS, RB, and RS, browser &

server derive symm. cipher keys
(CB, CS) & MAC integrity keys (IB, IS)
– One pair to use in each direction

• Browser & server exchange MACs
computed over entire dialog so far

• If good MAC, Browser displays

• All subsequent communication
encrypted w/ symmetric cipher (e.g.,
AES256) cipher keys, MACs
– Messages also numbered to thwart

replay attacks

Browser

Here’s my cert

~2-3 K
B of d

ata

{PS}KAmazon
PS

PS

{M1, MAC(M1,IB)}CB

{M2, M
AC(M2,

IS)}CS

MAC(di
alog,IS

)

MAC(dialog,IB)

Amazon
Server

