Middlebox Technologies with Intel SGX
A Literature Survey

Shiv Kushwah & Sumukh Shivakumar
What’s all the fuss with middleboxes?

HTTPS interception, middlebox models under fire

HTTPS interception in security products and services may be reducing security rather than improving it, according to US-CERT, which puts middleboxes in a precarious dramatic impact on connection security. To understand why security suffers, we investigate popular middleboxes and client-side security software, finding that nearly all reduce connection security and many introduce severe vulnerabilities. Drawing on our measurements, we conclude with a discussion on recent proposals to safely monitor HTTPS and recommendations for the security community.

Zakir Durumeric*, Zane Ma†, Drew Springall*, Richard Barnes‡, Nick Sullivan§, Elie Bursztein¶, Michael Bailey†, J. Alex Halderman*, Vern Paxson†

* University of Michigan † University of Illinois Urbana-Champaign ‡ Mozilla § Cloudflare ¶ Google ¶¶ University of California Berkeley †† International Computer Science Institute
Background
What are middleboxes?
Middleboxes in the Cloud

Cloud

APLOMB gateway

Enterprise

APLOMB: Making Middleboxes Someone Else's Problem - Network Processing as a Cloud Service
Problems with current Middlebox approaches
Alternatives

“Break and Inspect”
Alternatives

Homomorphic-Based
What are Enclaves?

- Intel SGX Enclave
- Untrusted App Code
- Trusted App Code
- Syscalls, Network Calls
- ECALL

Issues

- Memory Constrained
- No Network Calls
- No Trusted Clock
What are Enclaves?

Int x = 7;
...

Remote Attestation

Quoting Enclave

Expected

119 143
254 192

119 143
254 192
What are Enclaves?

Remote Attestation

```
Int x = 8;
...
```
How can SGX help Middleboxes?

- SGX provides **confidentiality** and **integrity**
- **Remotely** attest SGX-enabled middleboxes
 - Enforce correct and secure program behavior
 - **Bootstrap** secure channel of communication
SGX Solutions for Middleboxes

- Decrypting and Inspecting packets safely
- Processing and Saving information safely
- Resource efficiency
Evaluation Metrics
Metrics/Comparison Points

<table>
<thead>
<tr>
<th>Security</th>
<th>Features</th>
<th>Usability</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Network data protection</td>
<td>- Read encrypted packets?</td>
<td>- Implementation?</td>
</tr>
<tr>
<td>- Processing inside enclave?</td>
<td>- Network function chaining?</td>
<td>- Performance</td>
</tr>
<tr>
<td>- Network metadata protection?</td>
<td>- Stateful processing?</td>
<td>- Expressivity?</td>
</tr>
<tr>
<td>- Protects NF Vendor code?</td>
<td></td>
<td>- Programmability?</td>
</tr>
</tbody>
</table>

Security
- Network data protection
- Processing inside enclave?
- Network metadata protection?
- Protects NF Vendor code?

Features
- Read encrypted packets?
- Network function chaining?
- Stateful processing?

Usability
- Implementation?
- Performance
- Expressivity?
- Programmability?
Metrics/Comparison Points

<table>
<thead>
<tr>
<th>Security</th>
<th>Features</th>
<th>Usability</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Network data protection</td>
<td>● Read encrypted packets?</td>
<td>● Implementation?</td>
</tr>
<tr>
<td>● Processing inside enclave?</td>
<td>● Network function chaining?</td>
<td>● Performance</td>
</tr>
<tr>
<td>● Network metadata protection?</td>
<td>● Stateful processing?</td>
<td>● Expressivity?</td>
</tr>
<tr>
<td>● Protects NF Vendor code?</td>
<td></td>
<td>● Programmability?</td>
</tr>
</tbody>
</table>
Metrics/Comparison Points

Security
- Network data protection
- Processing inside enclave?
- Network metadata protection?
- Protects NF Vendor code?

Features
- Read encrypted packets?
- Network function chaining?
- Stateful processing?

Usability
- Implementation?
- Performance
- Expressivity?
- Programmability?
Metrics/Comparison Points

<table>
<thead>
<tr>
<th>Security</th>
<th>Features</th>
<th>Usability</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Network data protection</td>
<td>• Read encrypted packets?</td>
<td>• Implementation?</td>
</tr>
<tr>
<td>• Processing inside enclave?</td>
<td>• Network function chaining?</td>
<td>• Performance</td>
</tr>
<tr>
<td>• Network metadata protection?</td>
<td>• Stateful processing?</td>
<td>• Expressivity?</td>
</tr>
<tr>
<td>• Protects NF Vendor code?</td>
<td></td>
<td>• Programmability?</td>
</tr>
</tbody>
</table>
Overview of Space

Decryp and Inspect
- PRI
- SGX-Box
- mbTLS

Secure Processing in Third Parties
- S-NFV
- Safebricks
- ShieldBox
- Snort w/ SGX
- LightBox
- Trusted Click

Resource Efficiencies
- EndBox
Category 1: Decrypt and Inspect
Decrypt and Inspect

SGX-BOX: Enabling Visibility on Encrypted Traffic using a Secure Middlebox Module

PRI: Privacy Preserving Inspection of Encrypted Network Traffic
Multiple Middleboxes

mbTLS: And Then There Were More - Secure Communication for More Than Two Parties
Category 2: Secure Processing in the Cloud
Attestation for key sharing

Click Based Framework

S-NFV [Nov 2016]

Snort based

Packet decryption

Attestation for key sharing

SGX-Box [Aug 2017]

Attestation for key sharing

mbTLS [Dec 2017]

LightBox [Nov 2019]

Stateful

Snort w/ SGX [Feb 2018]

Safebricks [April 2018]

Pri [May 2016]

Trust Click [March 2017]

Click Based

ShieldBox [Sept 2017]

Click Based

EndBox [June 2018]
Main Ideas

● Approaches are concerned with problems of running NFs on cloud
 ○ Need to protect confidentiality of traffic
 ○ Securely and efficiently read packets
 ○ Securely enable NF chaining
 ○ Protect NF vendor code

● Build on existing NF technologies
 ○ Click
 ○ Snort
 ○ NF-enclave specific approaches
Middleboxes in the Cloud
What is Click?

- Software framework for packet processing
- Elements implement router functions
- Click configurations are modular and easy to extend
Click Based Approaches

Trusted Click: Overcoming Security issues of NFV in the Cloud
What is **Snort**?

- Signature-based Intrusion Detection/Prevention system
- Real time traffic analysis and packet logging
- Stateful (based on flows)
Snort Based Approaches

Snort IDS with Intel Software Guard Extensions
Recent Approaches

LightBox: Full-stack Protected Stateful Middlebox at Lightning Speed
Category 3: Resource Efficiency
Resource Efficiency

- Run SGX middleboxes on client machines
 - Connections go through client SGX middleboxes because of VPN keys
 - Connections sent directly are refused
 - After, necessary processing, SGX middlebox forwards traffic accordingly

EndBox: Scalable Middlebox Functions Using Client-Side Trusted Execution

[Image of diagram showing EndBox architecture]

Future Work
Future Directions

● Decentralized Approach
 ○ Stateful processing
 ○ Least Privilege to keep NFs “honest”

● Side Channels
 ○ Existing work focuses on metadata protection, not on timing related or other side channels