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Abstract We present two light-weight worm detection algo-
rithms that offer significant advantages over fixed-threshold
methods. The first algorithm, rate-based sequential hypoth-
esis testing (RBS), aims at the large class of worms that
attempts to quickly propagate, thus exhibiting abnormal lev-
els of the rate at which hosts initiate connections to new des-
tinations. The foundation of RBS derives from the theory of
sequential hypothesis testing, the use of which for detecting
randomly scanning hosts was first introduced by our previ-
ous work developing TRW (Jung et al. in Proceedings of the
IEEE Symposium on Security and Privacy, 9–12 May 2004).
The sequential hypothesis testing methodology enables us to
engineer detectors to meet specific targets for false-positive
and false-negative rates, rather than triggering when fixed
thresholds are crossed. In this sense, the detectors that we
introduce are truly adaptive. We then introduce RBS + TRW,
an algorithm that combines fan-out rate (RBS) and proba-
bility of failure (TRW) of connections to new destinations.
RBS + TRW provides a unified framework that at one end
acts as pure RBS and at the other end as pure TRW. Select-
ing an operating point that includes both mechanisms extends
RBS’s power in detecting worms that scan randomly selected
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IP addresses. Using four traces from three qualitatively dif-
ferent sites, we evaluate RBS and RBS + TRW in terms of
false positives, false negatives, and detection speed, finding
that RBS + TRW provides good detection of actual Code Red
worm outbreaks that we caught in our trace as well as internal
Web crawlers that we use as proxies for targeting worms. In
doing so, RBS + TRW generates fewer than one false alarm
per hour for wide range of parameter choices.

1 Introduction

If a network worm penetrates a site’s perimeter, it can quickly
spread to other vulnerable hosts inside the site. The infection
propagates by the compromised host repeatedly attempting to
contact and infect new potential victims. Figure 1 illustrates
a situation where a worm bypasses a firewall and then propa-
gates to local machines via an infected laptop plugged in to a
local network. The traffic pattern of fast worm propagation—
a single host quickly contacting many different hosts—is a
prominent feature across a number of types of worms, and
detecting such patterns constitutes the basis for several worm
detection approaches [2,9,14].

The problem of accurately detecting such worm scan-
ning becomes particularly acute for enterprise networks com-
prised of a variety of types of hosts running numerous,
different applications. This diversity makes it difficult to tune
existing worm detection methods [2,14] that presume prese-
lected thresholds for connection rates and window sizes over
which to compute whether a host’s activity is “too quick.”
First, finding a single threshold rate that accommodates all
(or almost all) benign hosts requires excessive tuning because
of diverse application behaviors (e.g., a Web browser gen-
erating multiple concurrent connections to fetch embedded
objects vs. an SSH client connecting to a server). Second,
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Fig. 1 Worm propagation
inside a site
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the window size chosen to compute the average rate affects
the detection speed and accuracy; if too small, the detec-
tion algorithm is less resilient to small legitimate connec-
tion bursts, but if too big, the detection algorithm reacts
slowly to fast propagating worms, for which brisk response is
vital.

In this paper, we first develop an algorithm for detect-
ing fast-propagating worms that use high-quality targeting
information. We base our approach on analyzing the rate at
which hosts initiate connections to new destinations. One
such class of worms are those that spread in a topologi-
cal fashion [12,17]: they gather information on the locally
infected host regarding other likely victims. For example,
the Morris worm examined .rhosts files to see what other
machines were known to the local machine [4,11]. A related
technique is the use of meta-servers, such as worms that
query search engines for likely victims [5]. These targeting
worms can spread extremely quickly, even using relatively
low-rate scanning, because the vulnerability density of the
addresses they probe is so much higher than if they use ran-
dom scanning. Furthermore, these worms can evade many
existing worm defense systems that rely on the artifacts of
random scanning such as number of failed connections and
the absence of preceding DNS lookups [2,9,18,19].

Our detection algorithm, rate-based sequential hypothe-
sis testing (RBS), operates on a per-host and per-connection
basis and does not require access to packet contents. It is built
on a probabilistic model that captures benign network char-
acteristics, which allows us to discriminate between benign
traffic and worm traffic. RBS also provides an analytic frame-
work that enables a site to tailor its operation to its network
traffic pattern and security policies.

We then present RBS + TRW, a unified framework for
detecting fast-propagating worms independent of their scan-

ning strategy. RBS + TRW is a blend of RBS and our previ-
ous threshold random walk (TRW) algorithm, which rapidly
discriminates between random scanners and legitimate traf-
fic based on their differing rates of connection failures [6].
Wald’s sequential hypothesis testing [15] forms the basis for
RBS + TRW’s adaptive detection.

We begin with an overview of related work in Sect. 2. Sec-
tion 3 then presents an analysis of network traces we obtained
from two internal routers of a medium-size enterprise. The
traced traffic includes more than 650 internal hosts, about
10% of the total at the site. We examine the distribution of the
time between consecutive first-contact connection requests,
defined by [9] as a packet addressed to a host with which the
sender has not previously communicated. Our analysis finds
that for benign network traffic, these interarrival times are
bursty, but within the bursts can be approximately modeled
using exponential distributions with a few hundred millisec-
ond average intervals.

In Sect. 4, we develop the RBS algorithm, based on the
same sequential hypothesis testing framework as TRW. RBS
quickly identifies hosts that initiate first-contact connection
requests at a rate n times higher than that of a typical benign
host. RBS updates its decision process upon each data arrival,
triggering an alarm after having observed enough empirical
data to make a distinction between the candidate models of
(somewhat slower) benign and (somewhat faster) malicious
host activity.

In Sect. 5, we evaluate RBS using trace-driven simula-
tions. We show that computing a simple trimmed mean suf-
fices to automatically discover an effective set of parameters
for running RBS. Moreover, we show that RBS triggers few
false positives when n is small (0 false positives when n ≤ 5)
when assessed against a trace that includes a variety of appli-
cations.
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Section 6 presents RBS + TRW, which automatically
adapts between the rate at which a host initiates first-contact
connection requests and observations of the success of these
attempts, combining two different types of worm detection.
Using datasets that contain active worms caught in action,
we show that RBS + TRW provides fast detection of scan-
ners and two hosts infected by Code Red II worms, while
generating less than one false alarm per hour.

2 Related work

Williamson first proposed limiting the rate of outgoing pack-
ets to new destinations [20] and implemented a virus throttle
that confines a host to sending packets to no more than one
new host a second [14]. While this virus throttling slows traf-
fic that could result from worm propagation below a certain
rate, it remains open how to set the rate such that it permits
benign traffic without impairing detection capability.

For example, Web servers that employ content distrib-
ution services cause legitimate Web browsing to generate
many concurrent connections to different destinations, which
a limit of one new destination per second would signifi-
cantly hinder. If the characteristics of benign traffic cannot
be consistently recognized, a rate-based defense system will
be either ignored or disabled by its users. Our RBS worm
detection algorithm continues to investigate the effectiveness
of this same metric, the rate of outgoing first-contact con-
nections. However, to accurately distinguish benign behav-
ior, we build our worm detector based on an empirically
driven model capturing benign traffic characteristics, instead
of choosing an arbitrary threshold.

Numerous efforts have since aimed to improve the sim-
ple virus throttle by taking into account other metrics such
as increasing numbers of ICMP host-unreachable packets or
TCP RST packets [2], number of failed first-contact connec-
tions [9,18], and the absence of preceding DNS lookups [19].
However, these supplementary metrics will be not much of
use if worms target only hosts that are reachable and have
valid names (e.g., topological worms).

This work is inspired by our previous paper [6], which
first used sequential hypothesis testing for scan detection.
Our previous paper develops the TRW portscan detection
algorithm based on the observation that a remote port scanner
has a higher probability of attempting to contact a local host
that does not exist or does not have the requested service
running.

Weaver et al. [18] present an approximation to TRW
suitable for implementation in high-performance network
hardware for worm containment. For the same problem of
detecting scanning worms, Schechter et al. [9] combine
credit-based rate-limiting and reverse sequential hypothesis
testing optimized to detect infection instances. In compari-

son, our RBS + TRW provides a unified framework built on
sequential hypothesis testing with two metrics, a rate and
a probability of success of a first-contact connection, that
cover a broad range of worms, mostly independent of their
scanning strategy or propagation speed.

There have been recent developments of worm detection
using content sifting (finding common substrings in packets
that are being sent in a many-to-many pattern) and automatic
signature generation [8,10,16]. These approaches are orthog-
onal to our approach based on traffic behavior in that the for-
mer require payload inspection, for which computationally
intensive operations are often needed. Moreover, although
our approach requires a few parameter settings, it requires
no training nor signature updates. However, content-based
approaches are capable of detecting slowly-propagating
(stealthy) worms that are indistinguishable from benign hosts
by their connection-level traffic behaviors.

3 Data analysis

We hypothesize that we can bound a benign host’s network
activity by a reasonably low fan-out per unit time, where
we define fan-out as the number of first-contact connection
requests a given host initiates. This fan-out per unit time, or
fan-out rate, is an important traffic measure that we hope
will allow us to separate benign hosts from relatively slowly
scanning worms. In this section, we analyze traces of a site’s
internal network traffic, finding that a benign host’s fan-out
rate rarely exceeds a few first-contact connections per sec-
ond, and time intervals between these connections can be
approximately modeled as exponentially distributed.

3.1 Distilled dataset

We analyze a set of 22 anonymized network traces, each
comprised of 10 min of traffic recorded at Lab on October
4, 2004. These were traced using tcpdump at two internal
routers within Lab, enabling them to collect bidirectional
traffic originated by internal hosts to both external hosts out-
side Lab and to other internal hosts inside Lab. We note that
separate traces are used to double-check empirical findings
and later to evaluate our detection algorithm.

In order to have a representative sample of benign traf-
fic, we apply two filtering methods to the Lab dataset. First,
we examine the data and remove periodic NTP traffic and
“triggered” connections in which a connection incoming to
a host causes the host to initiate a secondary connection out-
bound. Such triggered connections should not be considered
as first-contact connections when assessing whether a host is
probing. Second, we filter out internal vulnerability scanners
and crawlers, in order to find a set of “typical” benign hosts,
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Table 1 Lab dataset summary

Outgoing connections 49,049 (100%)
To internal hosts 32,967 (67.21%)

To external hosts 16,082 (32.79%)

Internal hosts ≥652

This analysis does not include NTP traffic or triggered outgoing con-
nections such as Ident, Finger, and FTP data-transfer

which we use to develop a model that captures their fan-out
rate statistics.

Table 1 summarizes theLab dataset after the first filtering.
The table shows that the traffic between internal Lab hosts
consists of about 70% of the total outbound traffic recorded
in the datasets. Had we traced the traffic at the site’s border,
we would have seen much less of the total network activity,
and lower first-contact connections accordingly.

For each 10-min trace, we observe a varying number of
internal hosts initiating outbound traffic during the observa-
tion period. The last row in Table 1 shows that the largest
number of active internal hosts in a 10-min trace is 652.1

From the traces we observe that over 99.5% of the hosts
contacted fewer than 60 different hosts in 10 min, correspond-
ing to an average fan-out rate below 0.1/s. We categorize these
hosts as benign. (Note that Twycross and Williamson [14] use
fan-out rate of 1/s as a maximum allowed speed for throttling
virus spreads.)

Only nine hosts exceed this threshold in this trace. Of
these, four were aliases (introduced by the traces having
separate anonymization namespaces) for an internal scan-
ner used by the site for its own vulnerability assessment. Of
the remainder, three hosts are main mail servers that forward
large volumes of email, and the other two hosts are inter-
nal web crawlers that build search engine databases of the
content served by internal Web servers. By manual inspec-
tion, we also later found another appearance of the internal
scanner that we missed using our 0.1/s fan-out rate threshold,
as in that instance the scanner contacted only 51 different IP
addresses during the 10-min period. We exclude the scanners
and the crawlers2 from our subsequent analysis. In what fol-
lows, we develop a model that captures fan-out rate statistics
of this set of “purely” benign hosts.

3.2 Analysis of time interval to visit new destinations

A host engaged in scanning or worm propagation will gen-
erally probe a significant number of hosts in a short time

1 Because each trace was anonymized separately, we are unable to tell
how many distinct internal hosts appear across all of the traces.
2 Note that we do not include the mail servers in the set of scanners, as
they are not scanners per se, but rather applications that happen in this
environment to exhibit high fan-out.
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Fig. 3 First-contact interarrivals initiated by benign hosts roughly fol-
low an exponential distribution with mean µ = 261 ms

period, yielding an elevated first-contact connection rate. In
this section, we analyze our dataset to determine the distribu-
tion of first-contact interarrivals as initiated by benign hosts.
We then explore the discriminating power of this metric for
a worm whose first-contact connections arrive a factor of n
more quickly.

Figure 2 shows the distribution of the amount of time
between first-contact connections for individual hosts. Here
we have separated out the scanners (identified as discussed
above). While the average interarrival time is 39.2 s, we often
see benign, non-scanner hosts initiating multiple first-contact
connections separated by very little (<1 s) time. In fact, these
short time intervals account for about 40% of the total inter-
vals generated by benign hosts, which makes it impractical
to use 1/s fan-out rate to identify possible worm propagation
activity.

However, when focusing on sub-second interarrivals, we
find that a benign host’s short-time-scale activity fits fairly
well to an exponential distribution, as illustrated in Fig. 3.
Here the fit to the empirical data uses µ = 261 ms. We note
that a scanner could craft its probing scheduling such that
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its fine-grained scanning behavior matches that of benign
users, or at least runs slower than what we model as benign
activity. However, this will significantly slow down the scan-
ning speed, so compelling attackers to make this modification
constitutes an advance in the ongoing “arms race” between
attackers and defenders.

We also note that we could extract significantly more pre-
cise interarrival models—including differing mean interar-
rival rates—if we partitioned the traffic based on its applica-
tion protocol. In Sect. 6.4, we show the measurement results
of mean interarrival rates for a few popular applications and
compare their differences. In the next section, based on these
characteristics of benign activity, we develop our detection
algorithm, RBS, for quickly identifying scanners or worm
infectees with a high accuracy.

4 RBS: rate-based sequential hypothesis testing

In this section, we develop a RBS testing algorithm, RBS,
which aims to quickly identify hosts issuing first-contact con-
nections at rates higher than what we model as benign activ-
ity. Following the results of Sect. 3, we use an exponential
distribution to model sub-second interarrival times of first-
contact connections initiated by a benign host. We use the
same distribution to model a worm’s behavior, to cast the
problem into a mathematical framework that allows us to
formulate expressions for expected false positives and neg-
atives as shown in this section. We then discuss in detail
in Sect. 4.1 the robustness of RBS when our assumptions are
violated.

Let H1 be the hypothesis that a given host is engaged in
worm propagation, and let H0 be the null hypothesis that
the host exhibits benign network activity. A host generates
an event when it initiates a connection to a destination with
which the host has not previously communicated, i.e., when
the host initiates a first-contact connection. As discussed in
the previous section, we assume that the interarrival times
of such events follow an exponential distribution with mean
1/λ0 (benign host) or 1/λ1 (scanner). When a host generates
the i th event at time ti , we can compute an interarrival time,
Xi = ti − ti−1 for i ≥ 1 and t0 the initial starting point,
and update the likelihood ratio of the host being engaged in
scanning (or benign).

Define X1, X2, . . . , Xn as a sequence of such interar-
rival times. Since we model each Xi as IID non-negative
exponential random variables, their sum, Tn , is the n-Erlang
distribution:

fn(Tn|H1) = λ1(λ1Tn)
n−1

(n − 1)! exp−λ1Tn (1)

0 31 2 4 5 6 7 8 9 10 time (sec)

4/sec
2/sec

1.6/sec
1/sec

Fig. 4 Ten first-contact connection arrivals in 10 s: the figure illustrates
that the average arrival rate can vary depending on the window size

Based on Eq. (1), we can develop a sequential hypothesis
test in which we define the likelihood ratio as:

Λ(n, Tn) = fn(Tn|H1)

fn(Tn|H0)
=

(
λ1

λ0

)n

exp−(λ1−λ0)Tn (2)

and the detection rules as:

Output =
⎧⎨
⎩

H1 if Λ(n, Tn) ≥ η1

H0 if Λ(n, Tn) ≤ η0

Pending if η0 < Λ(n, Tn) < η1

where we can set η1 and η0 in terms of a target false posi-
tive rate (the proportion of benign hosts that are erroneously
reported as scanners), α and a target detection rate (the pro-
portion of scanners that are correctly reported as scanners),
β [15]:

η1 ← β

α
(3)

η0 ← 1− β

1− α
(4)

Wald shows that setting thresholds as above guarantees
that the resulting false positive rate is bounded by α

β
and the

false negative rate is by 1−β
1−α

[15]. Given that β is usually
set to a value higher than 0.99 and α to a value lower than
0.001, the margin of error becomes negligible (i.e., 1

β
≈ 1

and 1
1−α
≈ 1).

4.1 RBS robustness

An essential advantage of RBS over a simpler scheme using
a fixed-rate threshold is that RBS is more robust to legiti-
mate bursty connections. Figure 4 illustrates how an average
arrival rate can fluctuate a great deal depending on the win-
dow size over which we compute the average. However, RBS
effectively can adapt its window size until it finds consistency
over a sufficient number of observations to reach a decision.

For instance, if a host has initiated n first-contact connec-
tions and the elapsed time for the nth connection is Tn , RBS
chooses H1 (scanner) only if the likelihood ratio Λ(n, Tn)

exceeds η1. Using Eqs. (2) and (3), we can obtain a threshold
on the elapsed time, TH1 , below which we arrive at an H1
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Fig. 5 TH1 and TH0 when λ0 = 3/s, λ1 = 20/s, α = 10−5, and
β = 0.99. The X axis represents the nth event and Y axis represents
the elapsed time for the nth event. a Fast spreading worm with 100

first-contact connections per second will be detected by RBS at the 8th
connection attempt, b Benign host with four first-contact connections
per second will bypass RBS at the 4th connection attempt

(scanner) decision:

β

α
≤ Λ(n, Tn)

β

α
≤

(
λ1

λ0

)n

exp−(λ1−λ0)Tn

ln
β

α
≤ n ln

λ1

λ0
− (λ1 − λ0)Tn

Tn ≤ n
ln λ1

λ0

λ1 − λ0
− ln β

α

λ1 − λ0
= TH1 (5)

Likewise, we can obtain a threshold elapsed time TH0 , above
which we conclude H0 (benign host):

TH0 = n
ln λ1

λ0

λ1 − λ0
− ln 1−β

1−α

λ1 − λ0
(6)

Figure 5 shows how those threshold elapsed times, TH1

and TH0 , partition the area into three decision regions—H1,
H0, and Pending. Figure 5(a) illustrates Tn of a host issuing
first-contact connections at 100 per second. At the 8th event,
T8 falls below TH1 , which drives the likelihood ratio to reach
the H1 decision. Note that with the set of parameters used
in Fig. 5, RBS defers making a decision until it sees at least
seven events; this occurs because the elapsed time, Tn , is
always greater than TH1 up to n = 6. (Ti is a non-negative,
non-decreasing random variable and TH1 becomes positive
when n > 6.1, given λ0 =3/s, λ1 =20/s, α = 10−5, and
β = 0.99.) This initial holding period makes RBS robust
against small traffic bursts. We can shorten this initial holding
period, however, if we use a smaller β or larger α.

In general, Eq. (5) provides important insights into the pri-
ors and the performance of RBS. TH1 is a function of n, taking
a form of g(n) = a(n − c), where a = (ln λ1

λ0
)/(λ1 − λ0)

and c = (ln β
α
)/(ln λ1

λ0
):

1. α and β affect only c, the minimum number of events
required for detection (i.e., the minimum window size).
For fixed values of λ1 and λ0, lower values of α or

higher values of β (i.e., greater accuracy in our deci-
sions) let more initial connections escape before RBS
declares H1. One can shorten this initial holding period
by increasing α or decreasing β. But we can only do so
to a limited degree, as c needs to be greater than the size
of bursty arrivals that we often observe from Web or P2P
applications, in order to avoid excessive false alarms.
Another different way to prevent damage from those ini-
tially allowed connection attempts is to hold them at a
switch until proven innocent [9].

2. λ0 and λ1 determine a, the slope of TH1 over n. The
inverse of the slope gives the minimum connection rate
that RBS can detect. Any host generating first-contact
connections at a higher rate than λ1 intercepts g(x) with
probability 1. There is a built-in robustness in this,
because the slope is strictly larger than 1

λ1
(what we

model as a scanner), which follows from the inequality
ln(x) < x − 1, 0 < x < 1.

In practice, our assumptions can be violated in two signif-
icant ways: the arrival rates may deviate from the priors, and
the exponential assumption may be invalid. First, regarding
a prior arrival rates λ0 and λ1, we note that RBS operates
accurately as long as benign hosts initiate first-contact con-
nections at a rate lower than λ0 and worms scan at a rate
higher than λ1. In fact, RBS can detect any scanner with a
rate λ′ provided that:

λ′ > 1

a
= λ1 − λ0

ln λ1 − ln λ0
(7)

because a host with a rate higher than λ′ will eventually cross
the line of TH1 and thus trigger an alarm.

Second, Eqs. (5) and (6) show that RBS bases its deci-
sion on two parameters—the number of attempts, n, and
the elapsed time, T (n)—and not the actual realization of
the arrival process. However, if the actual interarrival time
distribution differs from being exponential, the actual false
positive and negative rates can be higher than the target
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values. Our speculation is that the actual performance (in
terms of false positives and false negatives) deteriorates as
the processes become more bursty, time-dependent, or possi-
bly not even ergodic. We leave these as conjectures for future
investigation.

4.2 Limitations of simple rate-base thresholds

An issue to consider is whether we really need RBS’s more
sophisticated approach, or if a simpler scheme using a fixed-
rate threshold suffices. We model such a simpler scheme as
one that, upon each connection arrival, compares the fan-out
rate, n/T , with a threshold η, alerting if the rate exceeds the
threshold. Here, n is the number of first-contact connections
from a host and T the elapsed time over which they occurred.

In this section we evaluate such schemes and find that
they suffer from either significant false alarms, due to legiti-
mate bursty connections, or significant false negatives. RBS
is more robust to such bursts as it demands consistency over
a larger number of observations before reaching a decision.

We compute a host’s instantaneous fan-out rate as follows.
For an outgoing connection initiated by the host at time tc,
we look back in time for the n − 1 most recent first-contact
connections. If the time of the first of these is tp, then we
calculate the fan-out rate as the ratio of n/T = n/(tc − tp).

Using the same dataset as in Fig. 3, we plot the upper tail
of the distribution of the fan-out rate of non-scanning hosts,
as a function of the aggregation window size n in Fig. 6.
Recall that any detection of these connections constitutes a
false positive. So, for example, for windows of size n = 7,
the 99th percentile occurs right around 10 Hz. Thus, using
a window of size 7, to detect scanners that scan as slowly
as 10 Hz, we must accept a false positive rate of 1% per
window. With a window size of 7, this would mean over our
dataset the detector would generate 118 false positives. While
higher values of n reduce the false positive rate, they also will
increase false negatives, such as the bursty scanners discussed
in the previous section. Moreover, the essential advantage of
RBS over the simpler schemes is that RBS effectively can

adapt its window n and threshold η, rather than having to
use single, fixed values for these.

5 Evaluation

We evaluated the performance of RBS in terms of false pos-
itives using a trace-driven simulation of the Enterprise
dataset. RBS is in essence an algorithm that provides a tight
bound of benign hosts’ fan-out rate, enabling us to detect
worms and scanners that employ higher-than-normal fan-out
rates. We now discuss the evaluation dataset, followed by pre-
senting an inference method for setting a priori parameters,
and then discuss preliminary experimental results.

5.1 Dataset

The Enterprise packet trace was captured at internal
routers of a small enterprise network in November 2006. The
trace contains 184 active hosts that initiated 238,407 TCP
connections during the 1-h collection period. To establish a
ground truth, we extensively analyzed the trace using well-
known application signatures and the Ethereal program [3]
and found that about 76 applications were running at the
time, including P2P clients such as BitTorrent and KaZaA,
and VoIP programs such as Skype. Moreover, we found no
infected machines nor scanners in the trace, making it suit-
able for testing RBS’s accuracy in terms of false positives.

5.2 Setting parameters

We need to set four parameters (α, β, λ0, and λ1) in order
to run RBS. For high accuracy, we set β = 0.99 (99% tar-
get detection rate) and α = 10−6 (0.0001% target false alarm
rate). Note that we set α very low because the detection algo-
rithm executes for every first-contact connection initiated by
a local host, which adds up to a very large number of tests.

The typical fan-out rate of benign hosts (λ0) can change
according to time (e.g., weekdays vs. weekend) and site (e.g.,
a small company where most network traffic is related to
database transactions vs. a big ISP). To accommodate such
changes, rather than asking an administrator to provide a
magic number, we automatically infer the parameter λ0 as
follows:

– Observation: We observe interarrival times of first-
contact connections generated by each host (i) and keep
a list of mean interarrival times per host (µ1, µ2, µ3, . . . )
for a 10-min period.

– Inference: At the end of an observation run, we compute
a 10% trimmed mean [13] of the µi ’s: we first sort the data
and remove the top and bottom 10% of the data before
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evaluating the arithmetic mean. As such, the inferred
mean will not be affected by newly infected machines
as long as the population of the infected machines stays
below 10%. We set 1/λ0 equal to the inferred mean.
Figure 7 shows the inferred values of λ0 for the
Enterprise dataset.

However, there is no obvious pick for λ1, since a worm can
choose an arbitrary propagation rate. If λ1/λ0 is close to 1,
RBS takes longer to make a decision; but on the other hand,
it can detect slower scanners than for higher λ1/λ0 ratios, per
Eq. (7).

5.3 Preliminary results

Figure 8 shows the simulation results of RBS for the
Enterprise dataset as we vary λ1 as a multiple of λ0. As
described above, both λ0 and λ1 get updated every 10 min.

RBS generates no false positives when λ1/λ0 is less than
6. However, RBS erroneously triggers for two hosts (a
BitTorrent client and a chatty Web browser) when the ratio
is higher than 7. The main reason for these false positives is
short bursts. As discussed in Sect. 4, when λ1/λ0 is high, RBS
becomes sensitive to short bursts, making it prone to generat-
ing false positives. Given that bursty connections are some-
what prevalent among many applications, this result leads us
to recommend a small λ1/λ0 ratio. A caveat of using a small
ratio is that RBS may miss carefully crafted scan traffic if the
scanner repeatedly generates short bursts followed by a long
idle time.

Thus, while this assessment is against a fairly modest
amount of data, we find the results promising. We conduct a
more extensive evaluation in Sect. 6.

6 Hybrid approach: RBS + TRW

RBS uses fan-out rate to differentiate benign traffic
from scanners (or targeting worms), which we model as
Poisson processes with rates λ0 (benign) and λ1 (scanner),
with λ0 < λ1. Another discriminatory metric proved to work
well in detecting scanners is the failure ratio of first-contact
connections [6,9,18]. TRW [6] works by modeling Bernoulli
processes with success probabilities, θ0 (benign) and θ1

(scanner), with 1− θ0 < 1− θ1. In this section, we develop
a combined worm detection algorithm that exploits both a
fan-out rate model and a failure ratio model. We evaluate the
hybrid using trace-driven simulation, finding that this com-
bined algorithm, RBS + TRW, improves both overall accu-
racy and speed of detection.

Suppose that a given host has initiated connections to n
different destinations, and that the elapsed time until the nth
connection is Tn . Among those n destinations, Sn accepted
the connection request (success) and Fn = n − Sn rejected
or did not respond (failure). Applying the models from RBS
and TRW [6], we obtain a conditional probability distribution
function for scanners:

f [(Sn, Tn)|H1] = P[Sn|Tn, H1] × f [Tn|H1]
=

(
n

Sn

)
θ

Sn
1 (1− θ1)

Fn

×λ1(λ1Tn)
n−1

(n − 1)! exp−λ1Tn

where P[Sn|Tn, H1] is the probability of getting Sn success
events when each event will succeed with an equal probability
of θ1, and f [Tn|H1] is an n-Erlang distribution in which each
interarrival time is exponentially distributed with mean 1/λ1.
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Fig. 9 Classification of hosts
present in the evaluation
datasets: each point represents a
local host that generated more
than five first-contact
connections. a Lab-II (S:
scanner, N: host running nmap,
C: internal Web crawler), b ISP
(S: scanner, W: Code Red II
infectee)

(a) (b)

Analogous to f [(Sn, Tn)|H1], for benign hosts we can
derive:

f [(Sn, T )|H0] =
(

n

Sn

)
θ

Sn
0 (1− θ0)

Fn

×λ0(λ0Tn)n−1

(n − 1)! exp−λ0Tn .

We then define the likelihood ratio, Λ(Sn, Tn), as

Λ(Sn, Tn) = f [(Sn, Tn)|H1]
f [(Sn, Tn)|H0]

=
(

θ1

θ0

)Sn
(

1− θ1

1− θ0

)Fn

×
(

λ1

λ0

)n

exp−(λ1−λ0)Tn .

It is interesting to note that Λ(Sn, Tn) is just the product of
ΛT RW and ΛR BS . Moreover, Λ(Sn, Tn) reduces to ΛT RW

when there is no difference in fan-out rates between benign
and scanning hosts (λ1 = λ0). Likewise, Λ(Sn, Tn) reduces to
ΛR BS when there is no difference in failure ratios (θ1 = θ0).

6.1 Evaluation datasets

We evaluate this combined approach, RBS + TRW, using two
new sets of traces, each of which contains different types of
scanners that happen to wind up contrasting the strengths
of RBS and TRW. We first categorize hosts into four classes
based on their fan-out rates and failure ratios. In what follows,
we discuss types of scanners falling into each region and
detection algorithms capable of detecting such hosts.

– Class LH (low fan-out rate, high failure ratio): Slow-
scanning worms or scanners that probe blindly (randomly
or sequentially) will likely generate many failures, trig-
gering TRW with a high probability.

– Class HH (high fan-out rate, high failure ratio): Fast-
scanning worms (e.g., Code Red, Slammer) that exhibit
both a high fan-out rate and a high failure ratio will very

likely to drive both TRW and RBS to quickly reach their
detection thresholds.

– Class HL (high fan-out rate, low failure ratio): Flash,
metaserver, and topological worms [17] belong to this
class. These worms build or acquire a list of target hosts
and then propagate over only those potential victims, so
their connection attempts tend to succeed. While these
targeting worms can bypass TRW, their high fan-out rate
should trigger RBS.

– Class LL (low fan-out rate, low failure ratio): Most benign
hosts fall into this class, in which their network behavior is
characterized by a low fan-out rate and a low failure ratio.
Typically, a legitimate host’s fan-out rate rarely exceeds
a few first-contact connections per second. In addition,
benign users do not initiate traffic to hosts unless there
is reason to believe the host will accept the connection
request, and thus will exhibit a high success probability.
Neither TRW nor RBS will trigger hosts in this class,
which in turn, allows particularly stealthy worms, or pas-
sive “contagion” worms that rely on a user’s behavior for
propagation [17], to evade detection. Worms of this type
represent a formidable challenge that remains for future
work to attempt to address.

We use an average 5 Hz fan-out rate (λ0) and 0.5 failure
ratio (1− θ0) as baselines in order to categorize hosts in our
trace. Ideally, we should investigate all the hosts in the traces
to obtain a ground truth, but because of the sheer amount of
traffic volume (more than 2 million connections), we resort
to this screening process to sift out the many hosts with quite
limited activity.

We compute a fan-out rate with a sliding window of size 5
in order to capture bursty arrivals that often result from con-
current Web connections addressed to different Web sites for
embedded objects. Figure 9 classifies hosts in the datasets
based on the 5 Hz fan-out rate and 0.5 failure ratio thresh-
olds.

Table 2 shows the details of the datasets we use for evalua-
tion. The Lab-II dataset was collected at the same
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enterprise network as Lab. It is composed of 137 one-hour
long traces from December 2004 and January 2005, recorded
at internal routers connecting a variety of subnets to the rest of
the enterprise and the Internet. TheISP dataset was recorded
using tcpdump at the border of a small ISP in April 2003.
It contains traffic from 389 active hosts during the 10-h mon-
itoring period (The high number of connections is due to
worm infections during the time of measurement.).

The table shows the division of the internal hosts into
the four categories discussed above. Manual inspection of
the hosts in HH, HL, and LH3 reveals that there are five
hosts each in both of Lab-II and ISP whose behavior
qualifies them as scanners and worms that we aim to detect
(H1) because of their high-fan-out or high-failure behaviors:
For Lab-II, the two HH hosts are one internal vulnera-
bility scanner and one host that did a fast nmap [1] scan
of seven other hosts; one LH host is another internal vul-
nerability scanner; two HL hosts are internal Web crawlers
that occasionally contacted tens of internal Web servers to
update search engine databases. For ISP, the HH hosts are
two Code Red II infectees plus an HTTP scanner, and the
LH hosts are two slower HTTP scanners.

The one HH host in the Lab-II dataset that we classify
as benign (H0) turns out to be a NetBIOS client that often
(benignly) made connection requests to absent hosts. The
two benign HH hosts in the ISP dataset are all clients run-
ning P2P applications that attempt to contact a large number
of transient peers that often do not respond. Most benign LH
hosts are either low-profile NetBIOS clients (Lab-II) or
P2P clients (ISP), and most benign HL hosts from Lab-II
are caused by Web clients accessing Web sites with many
images stored elsewhere (e.g., a popular news site using
Akamai’s content distribution service, and a weather site hav-
ing sponsor sites’ images embedded).

Table 2 also shows that while those two thresholds are
useful for nailing down a set of suspicious hosts (all in either
HH, LH, or HL), a simple detection method based on fixed
thresholds would cause 66 false positives because of benign
hosts scattered in the LH and HL regions, as shown in Fig. 9.
However, using dynamic thresholds based on the previously
observed behavior, RBS + TRW accurately identifies those
ten target hosts while significantly reducing false positives.

6.2 Experimental results

We evaluate RBS + TRW by varying λ1 from λ0 to 10λ0, and
θ1 from 0.2θ0 to θ0. As discussed in Sect. 5, we infer λ0

3 We looked into each host in those three classes for the ISP dataset,
and the 66 of such hosts for the Lab-II dataset that generated more
than 20 first-contact connections in a 1-h monitoring period.

Table 2 Evaluation datasets: scanning hosts include vulnerability
scanners, worm infectees, and hosts that we use proxies for targeting
worms because of their anomalous high-fan-out rate

Lab-II ISP

Outgoing connections 796,049 1,402,178

Duration (h) 137 10.5

H HH Scanning 2 3

Benign 1 2

O LH Scanning 1 2

Benign 34 3

S HL Scanning 2 0

Benign 26 0

T LL Scanning 0 0

Benign 1,321 260

≤ 5 first-contact connections 2,621 119

S Total Scanning 5 5

Benign 4,003 384

Total 4,008 389

and θ0 using 10% trimmed means.4 We set β = 0.99, and
α = 10−6. Figures 10 and 11 show the number of detections
and false positives for each pair of λ1 and θ1. In particular, for
λ1 = λ0, the combined algorithm reduces to TRW (dashed
vertical lines along the θ axis), and when θ1 = θ0, to RBS
(dashed vertical lines along the λ axis).

Table 3 compares the performance of the combined algo-
rithm against that of RBS and TRW alone. First, we find the
priors that make RBS (TRW) the most effective (0 false neg-
atives) in identifying scanners in the Lab-II (ISP) dataset.
The nature of our test datasets keeps either algorithm from
working better across both datasets. In fact, when λ1 = 10λ0

and θ1 = θ0, RBS has 0 false negatives for Lab-II, but
misses 2 LH scanners in ISP. In comparison, when λ1 =
λ0 and θ1 = 0.2θ0, TRW has 0 false negatives for ISP,
but misses 3 scanners in Lab-II, including the two Web
crawlers.

We could address the problem of false negatives for either
algorithm by running TRW and RBS in parallel, raising an
alarm if either algorithm decides so. However, this approach
comes at a cost of an increased number of false alarms, which
usually result from LH hosts (e.g., Windows NetBIOS con-
nections, often made to absent hosts) or HL hosts (e.g., a
busy mail server or a Web proxy).

6.3 Tuning parameters

In general, improving the accuracy of a detection
algorithm requires iterative adjustments of decision rules:

4 We placed an upper bound (0.9) on θ0, since a small value of θ0 (e.g.,
0.9999) causes TRW to trigger for a few spurious failures.
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Fig. 10 Simulation results of
RBS + TRW for the Lab-II
dataset, varying λ1 and θ1.
a Detection (out of 5 targets),
b false alarms (out of 4,008
hosts)
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Fig. 11 Simulation results of
RBS + TRW for the ISP dataset,
varying λ1 and θ1. a Detection
(out of 5 targets), b false alarms
(out of 389 hosts)
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Table 3 Evaluation of RBS + TRW versus RBS and TRW

λ1 θ1 Lab-II ISP

False − False + N |H1 False − False + N |H1

RBS 10λ0 = θ0 0 2 5.6 2 3 6.4

TRW = λ0 0.2θ0 3 21 18.5 0 7 10.0

RBS + TRW 5λ0 0.6θ0 0 3 6.9 1 3 5.0

Both Lab-II and ISP each have five scanners. N |H1 represents the average number of first-contact connections originated by the detected hosts
upon detection

first improving the detection rate by loosening the decision
rule, and then decreasing the false positive rate by tightening
the decision rule without losing too many correct detections.
For this iteration, our combined algorithm, RBS + TRW pro-
vides two knobs, λ1 and θ1, that we can adjust to tune the
detector to a site’s traffic characteristics.

The trace-driven simulation shows that RBS + TRW with
λ1 = 5λ0 and θ1 = 0.6θ0 misses only one low-profile target
host (a slow HTTP scanner from ISP) while generating no
more than 6 false positives, per Table 3. Had we run RBS
and TRW in parallel, we could have eliminated all the false
negatives, but at the cost of 33 false alarms altogether.

Overall, RBS + TRW provides the good detection of high-
profile worms and scanners (no more than 2 misses across
both datasets) while generating less than 1 false alarm per
hour for a wide range of parameters (λ1 ∈ [4λ0, 8λ0] and

θ1 ∈ [0.4θ0, 0.7θ0]), and reaching its detection decisions
quickly (less than 7 first-contact connections on average).

6.4 Detection tailored to application traffic characteristics

One can complement RBS + TRW with a classification engine
and run the algorithm with specific parameters per appli-
cation. For instance, many peer-to-peer applications probe
other neighboring hosts in order to find the best peer from
which to download a file. For a peer-to-peer client having
a large number of transient peers, this probing activity can
generate many failed connections, leading to an alarm. In
such a case, grouping peer-to-peer traffic and running a sepa-
rate instance of RBS + TRW with the parameters particularly
tuned for this application should significantly improve the
algorithm’s performance.
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Fig. 12 A total of 10%
trimmed mean of first-contact
connection statistics for selected
applications. The figures show
the statistics for the top
four applications used by more
than ten clients in the Lab-II
dataset. a First-contact
connection arrival rate,
b first-contact connection
success rate
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This section presents measurement and simulation results
demonstrating that (1) indeed, a few applications consis-
tently exhibit lower success rates or higher fan-out rates
(or both) because of their built-in probing activity and (2)
RBS+TRW’s accuracy improves as these applications’ char-
acteristics are factored in when establishing priors. Note that
we set a priori parameters for each application automatically
using the 10% trimmed mean.5

First, we measure 10% trimmed mean of first-contact con-
nection arrival rates and their success rates for selected appli-
cations. We note that our method of traffic classification,
which is based on the destination port numbers (e.g., 80/tcp
for Web), may generate inaccurate grouping because of
application-level tunnels and dynamic port usage [7]. More-
over, one of our datasets (Lab-II) has recorded limited
port information if the destination port number is higher
than 1,024, and therefore we are unable to distinguish appli-
cations using such ephemeral ports, including many peer-
to-peer clients. However, despite these limitations, we find
that this port-based traffic classification is useful for examin-
ing traffic characteristics for several well-known applications
such as Web, NetBIOS-SSN (139/tcp), and SMTP (25/tcp).
Figure 12 shows first-contact connection statistics (arrival
rate and success rate) for four popular applications found in
the Lab-II dataset. We obtain similar results for the ISP
dataset.

We re-ran the simulations of RBS + TRW with the same
set of parameters as in Sect. 6, but this time we used sep-
arate priors (λ0 and θ0) for each destination port number,
based on 10% trimmed means computed from the previous
10-min traffic. We assigned default priors equal to the aver-
age across all traffic in the past 10 min for cases where we
had no priors otherwise available (e.g., we did not previously
observe any traffic to that destination port). Figures 13 and 14
show the improvement of RBS + TRW’s accuracy using per-
application priors compared to Figs. 10 and 11. Except for a
few combinations of parameters, using per-application priors

5 See Sect. 5 for discussions on how we compute trimmed means.

clearly helps with detecting somewhat stealthy scanners that
scan at a higher rate than a typical client using that applica-
tion. Another noticeable improvement is that for theLab-II
dataset, many of false alarms caused by spurious NetBIOS
connections are correctly identified as benign when we use
per-application priors.

7 Discussion

This section discusses several technical issues that may arise
when employing RBS + TRW in practice. While addressing
these issues is beyond the scope of this paper, we outline
ideas and directions based on which we will pursue them in
future work.

Operational issues: A worm detection device running
RBS + TRW needs to maintain per local host information.
For each host, a detector must track first-contact connections
originated by the host, their failure/success status, and the
elapsed time. The state thus increases proportional to the
number of local hosts in the network (N ) and the sum of
all their currently pending first-contact connections. Given
that RBS + TRW requires ≤ 10 first-contact connections on
average to reach a decision (Sect. 6), we can estimate amount
of state as scaling on the order of 10N . Note that every time
RBS + TRW crosses either threshold, it resets its states for
the corresponding host.

When constrained by computation and storage resources,
one can employ cache data structures suggested by Weaver et
al. [18] that track first-contact connections with a high preci-
sion. However, we note that running RBS + TRW on aggre-
gate traffic across hosts (as opposed to the per-host operation
for which it is designed) can significantly affect the detection
performance due to the uneven traffic distribution generated
by each end-host [21].

Post-detection response: The results in Table 3 corre-
spond to RBS + TRW generating 0.07 false alarms per hour
at theLab-II site and 0.57 per hour at theISP site. This low
rate, coupled with RBS + TRW’s fast detection speed, make
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Fig. 13 Additional detection
by using per-application priors.
a Lab-II, b ISP
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Fig. 14 Number of false alarms
reduced by using per-application
priors. a Lab-II, b ISP
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it potentially suitable for automated containment, crucial
to defending against fast-spreading worms. Alternatively, a
network operator could employ connection rate-limiting for
hosts detected by RBS + TRW, automatically restricting such
hosts to a low fan-out rate.

Limitations: As indicated in Fig. 9, RBS + TRW is unable
to detect targeting worms using high-quality hit lists com-
prised of at least 70% active hosts and spreading no faster than
several first-contact connections per second. Detecting such
worms might be possible by working on larger time scales.
For example, a scanner that generates first-contact connec-
tions at a rate of 1 Hz will end up accessing 3,600 different
hosts in an hour, far outnumbering the sustained activity of
a typical benign host. Thus, a natural avenue for future work
is assessing the operation of RBS on longer timescales.

Finally, attackers can game our detection algorithm by
tricking end users into generating first-contact connections
either at a high rate (RBS), or that will likely end up failing
(TRW). For instance, similar to an attack in [9], an attacker
could put content on a web site with numerous embedded
links to non-existent destinations.

8 Conclusion

We have presented a worm detection algorithm, RBS, that
rapidly identifies high-fan-out behavior by hosts based on
the rate at which the hosts initiate connections to new des-
tinations. RBS uses the sequential hypothesis testing [15]
framework. While built using a model that the time between
connection attempts to new destinations is exponentially

distributed (which we show is a reasonable approximation
for bursts of activity), RBS decisions reflect the aggregate
measurement of the total elapsed time over a number of
attempts, not the characteristics of individual arrivals. We
define RBS in terms of a single discriminating metric—
the rate of connection attempts—which differs substantially
between benign hosts and an important class of worms. While
the choice of such a metric evokes the measurement of an
average rate over a window of certain size (and the compar-
ison of the measured rate to a fixed threshold), RBS is more
elaborate. The algorithm draws from sequential hypothesis
testing the ability to adapt its decision-making in response to
the available measurements in order to meet specified error
requirements. We can view this as an adaptation of both the
window size (i.e., how many attempts to make a decision)
and the threshold (i.e., what is the minimum measured rate
over that window that leads to a trigger). This adaptation
gives RBS a robustness unseen in fixed window/threshold
schemes.

We evaluated RBS using trace-driven simulations. We find
that when the factor of speed difference, n, between a scanner
and a benign host is small, RBS requires more empirical data
to arrive at a detection decision but stays robust against short
bursts. When n is less than 6, RBS generates no false positives
for a 1-h trace that includes P2P clients and VoIP programs
known to connect to a set of peers.

We then presented RBS + TRW, a hybrid of RBS and
TRW [6] which combines fan-out rate and probability of suc-
cess of each first-contact connection. RBS + TRW provides
a unified framework for detecting fast-propagating worms
independent of their scanning strategy (i.e., topological or
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scanning worms). Using two traces from two qualitatively
different sites, containing 389 active hosts and 4,008 active
hosts, we show that RBS + TRW provides fast detection of
hosts infected by Code Red II, as well as the internal Web
crawlers that we use as proxies for topological worms. In
doing so, it generates less than one false alarm per hour.
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