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Abstract

Facing abusive traffic from the Tor anonymity network,
online service providers discriminate against Tor users.
In this study, we characterize not only the extent of such
discrimination but also the nature of the undesired traf-
fic originating from the Tor network—a task compli-
cated by Tor’s need to maintain user anonymity. We
address this challenge by leveraging multiple indepen-
dent data sources: email complaints sent to exit opera-
tors, commercial IP blacklists, webpage crawls via Tor,
and privacy-sensitive measurements of our own Tor exit
nodes. As part of our study, we also develop methods for
classifying email complaints and an interactive crawler
to find subtle forms of discrimination, and deploy our
own exits in various configurations to understand which
are prone to discrimination. We find that conservative
exit policies are ineffective in preventing the blacklisting
of exit relays. However, a majority of the attacks origi-
nating from Tor generate high traffic volume, suggesting
the possibility of detection and prevention without vio-
lating Tor users’ privacy.

1 Introduction

Anonymity systems like Tor provide a useful service to
users who wish to access the Internet without reveal-
ing their intended destination to any local monitoring,
or their network-layer identity to the final destination.
However, as Tor has increased in scale and usage, ten-
sions have emerged between Tor users and online service
providers. Specifically, service providers claim that the
anonymity provided by Tor is often used maliciously for
spamming, vulnerability scanning, scraping, and other
undesired behavior (e.g., [1]). As a result, Tor users
now face differential treatment (e.g., needing to solve
CAPTCHAs before receiving services) and even outright
blocking [2].

At its core, the problem is that in return for anonymity,
each Tor user shares their reputation with other users.

As a result, the malicious actions of a single Tor user
can lead IP abuse blacklists to include IP addresses used
by Tor exit relays. Consequently, websites and content
providers treat even benign Tor users as malicious. In
this paper, we characterize aspects of the conflict be-
tween users desiring anonymity and websites aiming to
protect themselves against malicious Tor traffic. We in-
vestigate the nature of traffic that exits the Tor network
and is undesired by online service providers. We also
actively measure various forms of discrimination per-
formed against Tor users.

Challenges. We grapple with two key challenges: First,
measuring Tor traffic is antithetical to the goals of the
anonymity system and poses ethical challenges. Second,
defining and identifying undesired or abusive network
traffic is hard as opinions vary and encryption can render
inspection of traffic infeasible. We address both chal-
lenges by focusing on the receivers’ reactions to Tor traf-
fic rather than the traffic itself. We consider email com-
plaints sent to Tor relay operators (§4) and blacklisting
of Tor-related IP addresses (§5), and take measurements
of server responses to Tor traffic, both synthetic (§6) and
user-driven (§7). These datasets not only allow us to ob-
serve the effects of undesired traffic without measuring
it, but also provide an operational definition of undesired
traffic: the traffic that leads to complaints, blacklisting,
or rejecting of Tor users. This operationalization allows
us to sidestep debates over what constitutes abuse and
to focus on the subset of undesired Tor traffic that has
affected operators and users.

Additionally, collecting and analyzing each of these
four datasets presented technical challenges. Analyzing
3 million email complaints received by Tor relay opera-
tors since June 2010 required us to construct automated
processing methods (§4). Understanding the inclusion
of Tor-related IP addresses in IP blacklists required us to
develop methods for teasing apart reactive blacklisting—
i.e., blacklisting triggered by abuse—from proactive
blacklisting—i.e., blacklisting due to Tor’s pre-existing



reputation (§5). Measuring the prevalence of discrimina-
tion faced by users required exercising multiple aspects
of websites and inspecting them for subtle forms of dis-
crimination (e.g., CAPTCHAs and interaction-based dis-
crimination) in addition to outright blocking. To address
this issue and accurately measure discrimination against
users, we go beyond the prior work of Khattak et al.
and develop a crawler capable of exercising the search
and login features of websites. Taking measurements of
real Tor traffic required the creation and deployment of a
privacy-sensitive logging approach for our own Tor exit
relays. We also consider aspects of Tor exit relays that
make them more susceptible to complaints, IP blacklist-
ing, or blocking. We augment this analysis by deploying
several Tor exits with varied configurations and monitor-
ing the reactions they produced.

Key Findings. One major takeaway from our analysis
is that many of the attacks originating from Tor generate
high traffic volume (e.g., DDoS attacks, port scanning),
raising the possibility of blocking them using privacy-
sensitive techniques (§8). We believe developing, im-
plementing, and deploying such techniques may provide
online service operators a more effective means of curb-
ing abuse than IP blacklisting while also preventing lost
utility to Tor from blocking.

Our analysis of email complaints shows that, histori-
cally, the most vocal complainants about Tor traffic were
a small number of copyright enforcement firms. This is
no longer be the case, possibly due to Tor blocking Bit-
Torrent’s standard ports by default (Table 2 in §4). The
most common non-copyright complaints were about net-
work abuse and attempts to gain unauthorized access (Ta-
ble 3 in §4).

From our analysis of commercial IP blacklists, we find
that 7% of the commercial IP blacklists we analyze en-
gage in proactive blocking of Tor users—i.e., blacklist-
ing Tor exit relays soon after they are listed in the con-
sensus. This is indicative of blacklists performing dis-
crimination against Tor exit relays as a matter of policy,
rather than based on undesired traffic (§5). Currently,
88% of Tor relays are blacklisted on one or more of the
blacklists, compared to 9% and 69% of the endpoints of
the VPNGate and HMA VPN services, respectively (Fig-
ure 4 in §5). We also find that conservative exit policies
do not reduce Tor exit relays’ susceptibility to getting
blacklisted, which appears to reflect that such policies
still allow for Web access, the channel most extensively
used for abuse.

Finally, we find discrimination to be a pressing con-
cern. Our synthetic experiments show that discrimina-
tion occurs on 20% of all Alexa Top 500 website front-
page loads through a subset of Tor exits. Focusing on
the search and login functionalities of the Alexa Top 500
websites, we see a 3.9% and 7.5% increase in observed

discrimination (compared to front-page load discrimina-
tion), respectively (Table 6 in §6). We also find that
real Tor users experience high fractions of failed HTTP
requests (15.8-33.4%) and HTTPS handshakes (35.0—
49.6%) while browsing the Alexa Top 1M websites using
our deployed relays (Table 8 in §7).

2 Background and Related Work

Tensions between Tor and online services. Tor is a
low-latency onion routing network with over 2M daily
users and over 7K supporting servers [3]. While propo-
nents of Internet freedom laud the anonymity provided
by Tor, it can also provide a cloak for malicious net-
work activities. Indeed, CloudFlare reported that 94% of
the requests from the Tor network are “malicious”, con-
sisting of comment spam, scanning, and content scrap-
ing [1]. According to a report published by Distill net-
works, 48% of Tor requests are malicious, higher than
non-Tor requests (38%) [4]. A study of the Sqreen appli-
cation protection service found that connections through
Tor are responsible for ~30% of all attacks on their cus-
tomers, including password brute force attacks, account
enumerations, and fraudsters [5]. As per Akamai’s State
of the Internet report, an HTTP request from a Tor IP ad-
dress is 30 times more likely to be a malicious attack than
one from a non-Tor IP address [6]. Imperva-Incapsula
found that in a period of 2.5 weeks, 48.53% of the attack
requests came from Tor [7]. However, the majority of
these attack sessions were originated from well-known
DDoS bots and bad clients, which can be identified us-
ing approaches other than IP reputation. Not counting
the attacks from well-known attackers, the fraction of at-
tack sessions originating from Tor went down to 6.78%,
which is comparable to the attacks coming from the rest
of the Internet population in Ireland (5.45%).

Different services have reported similar types of at-
tacks from Tor. The three most common attacks from
Tor to Akamai’s services were automated scanning (path
scanning and vulnerability scanning), SQL injection, and
cross-site scripting attacks [6]. IBM reports that SQL
injection, automated scanning, and DDoS are the most
common attacks from Tor [8]. Sqreen found authen-
tication attacks (brute force attack on a specific user
account, or accounts enumeration), path scanning, and
SQL/NoSQL injections [9] are likely to originate from
Tor [5]. Our analysis of the abuse complaints to a num-
ber of Tor exit relays reflects similar proportions of attack
traffic (Section 4).

Despite reports claiming a higher likelihood of ma-
licious traffic from Tor, there have been debates about
the correctness of their inference methods. For in-
stance, Perry, writing for the Tor Project’s blog, ques-



tions whether CloudFlare’s methods considered as ma-
licious all traffic from an exit relay that ever sent any
malicious traffic [10].

While websites might be tempted to blacklist all Tor
IPs in a proactive attempt at security, doing so could
cause a loss in revenue. Akamai’s report highlights that
Tor users are just as likely to make purchases from rev-
enue generating websites as non-Tor users [6].

Blocking and Filtering of Tor. Many government cen-
sors around the world block access to Tor [11], the sub-
ject of numerous measurement studies [12-16]. How-
ever, such government censorship blocks access fo the
Tor entry nodes, which is different from server-side Tor
blocking, which blocks access from the Tor exit nodes.

Khattak et al. is the only systematic measurement
study of server-side Tor blocking [2]. They showed that
in 2015 at least 1.3 million IP addresses blocked Tor at
the TCP/IP layer, and 3.6% of the Alexa Top 1,000 web-
sites blocked Tor at the HTTP layer. At the TCP/IP layer,
the hosting services GoDaddy and Dreamhost are among
the top five Tor blockers. CloudFlare blocks access at the
HTTP layer. Our work extends the work of Khattak et
al. by additionally measuring the blocking of login and
search functionality. We find a higher rate of blocking
(20.03%) than Khattak et al. (3.6%). We demonstrate
that Khattak et al.’s headless crawler underestimates the
blocking rate (Figure 12).

To understand the impact of blocking on Tor users, we
measure the number of failed requests to Alexa Top 1M
web pages at the exit level using privacy-sensitive log-
ging on our exits.

3 Our Deployed Exits

To aid our studies of complaint emails, IP blacklisting,
and discrimination, we deployed and used data from ten
of our own exits in addition to current and historical
records about pre-existing Tor exits.

Max. BW  Exit Policy Num.
Large-Default 61 MBps*  Default 2
Medium-Default 10 MBps Default 2
Medium-RR 10 MBps RR 2
Small-Default 2 MBps Default 2
Small-RR 2 MBps RR 2

Table 1: Configurations of our deployed exit relays.
*The large exits’ policy allows for unlimited bandwidth
usage. We provide the maximum bandwidth achieved
during the study period.

We vary the bandwidth and exit policy of our exits
in order to understand the impact of relay characteris-

tics on email complaints, blacklisting, and discrimina-
tion. We used bandwidth allocations for the relays of 2
MBps (small exits), 10 MBps (medium exits), and un-
limited (huge exits). In total, our deployed relays han-
dled over 3% of all Tor exit traffic during their deploy-
ment. The exit policies were varied to either be the Tor
default policy or the “Reduced-Reduced” policy. The de-
fault policy [17] allows all ports except those misused for
email and news spam (25, 119), network attacks (135-
139, 445, 563), or peer-to-peer file sharing (1214, 4661—
4666, 6346-6348, 6699, 68816999, plus the adjacent
ports 6349—6429). The Reduced-Reduced (RR) exit pol-
icy, designed to avoid blacklisting, additionally blocks
ports associated with SSH, Telnet, IRC(S), and other pro-
tocols [18]. We summarize our relay configurations in
Table 1.

Analyzing the usage statistics of ports on our exit
relays, we see that web-traffic accounts for 98.88%
of all connections made through the RR policy exits.
In contrast, traffic though the default policy exits has
higher application/port diversity, with only 31.36% of
observed traffic being HTTP(S). We measure this using
our privacy-sensitive logging described in Section 7.

4 Email Complaints about Abuse

In this section, we look at the abuse complaints received
by exit operators. We use these complaints as a proxy
for understanding the type and frequency of undesired
incidents happening through Tor exit relays.

4.1 The Email Corpus

In addition to our own exits, we obtained access to
abuse complaints emailed to four exit relay operators,
(Table 2). The largest email corpus, consisting of
~3M emails, came from a subset of exits operated by
Torservers.net (https://torservers.net/). Using
whois queries on exit IP addresses and counting the num-
ber of exits that use Torservers.net as their abuse contact,
we estimate that they run 10 to 20 exits, with the uncer-
tainty coming from fuzzy matches.! According to the
latest Tor consensus, Torservers is one of the largest exit
operators in terms of overall bandwidth capacity. The
apx exit family includes three exits: apx1 [19], apx2 [20]
and apx3 [21]. The other two exits are TorLandl [22]
and jahjah [23]. TorLandl was one of the oldest Tor ex-
its, running since 2011 until February 2017.

Our complaints dataset lacks any complaints sent by
fax or mail, or those sent to only the abuse contact of the
associated autonomous system. Also, some email com-
plaints might have been lost or deleted. For example, the

The current operators of Torservers were unable to answer the ex-
act number of exits they ran over time.



# Complaints Top Complaint

Exit Family # Exits % Tor Traffic Email Dates
Torservers.net 10-20 7.05%  2010/06-2016/04
apx 3 1.94%  2014/11-2016/05
TorLand1 1 0.75% 2011/12-2016/10
jahjah 1 0.17% 2016/1-2017/1
Our exits 10 3.14% 2016/9-2017/2

2,987,017 DMCA Violation (99.74%)
293  Automated Scan (38.49%)
307 Malicious Traffic (16.99%)

75  Unauthorized Login Attempts (34.15%)
650 Network Attack (48.68%)

Table 2: Email complaints sent to the exit operators

jahjah exit was started in 2015 but the operator was only
able to provide complaints received from 2016 onwards.

4.2 Analysis

We extract the nature of abuse, the time of complaint, and
the associated exit IP addresses. 99.7% of the complaints
received by Torservers.net related to Digital Millennium
Copyright Act (DMCA) violations, with over 1 million
of the complaints sent by one IP address. These emails
use a template, enabling parsing of email text with regu-
lar expressions. The majority of the non-DMCA emails
also follow a template, but the structure varied across a
large number of senders. To extract the relevant abuse
information from non-DMCA complaint emails, we first
applied KMeans clustering to identify similar emails. We
manually crafted regular expressions for each cluster. We
used these regular expressions to assign high confidence
labels to emails. Not all emails matched such a tem-
plate regular expression—e.g., one-off complaints sent
by individuals. We classified these emails by looking
for keywords related to types of abuse. We iteratively
refined this process until manually labeled random sam-
ples showed the approach to be quite accurate, with only
2% cases of misidentification.

99.99% of all DMCA violation complaints were
against the Torservers’ exits. The other exits collec-
tively received only 12 such complaints. Over 99% of
DMCA complaints mentioned the usage of BitTorrent for
infringement; the rest highlighted the use of eDonkey.

We categorized the Non-DMCA complaints into five
broad categories enumerated in Table 3. Network abuse
is the most frequent category of non-DMCA complaints.
~15% of the complaints related to network abuse came
from Icecat [24], a publisher of e-commerce statistics
and product content. Icecat’s emails complain about ex-
cessive connection attempts from the jahjah exit and 13
exit IP addresses hosted by Torservers. These emails
were received from November 2011 until December
2012. Other exit operators also received similar com-
plaints during the same time frame [25]. We checked a
recent Tor consensus in November 2016 and found eight
exits that avoided exiting to the Icecat IP address.

The second most common non-DMCA complaints are
about automated scans and bruteforce login attacks on
Wordpress. Automated scanning, specifically port and
vulnerability scanning, accounts for 13.6% of the non-
DMCA complaints across the entire time range of our
dataset. Instances of Wordpress bruteforce login at-
tacks lasted for a comparatively shorter period, Septem-
ber 2015 until May 2016, but constitute 12.1% of non-
DMCA complaints. All of the exits in our dataset re-
ceived complaints about bruteforce login attempts from
Wordpress except our own exits, probably because we
started our exits after the attack stopped.

Email, comment, and forum spam constitutes 9.01%
of non-DMCA complaints. Note that all of the exits
in question have the SMTP port 25 blocked. Our data
shows a spike in the number of abuse complaints regard-
ing referrer spam from Semalt’s bots [26] towards the
end 2016. 1.05% of the non-DMCA emails complain
about harassment. Over 11% of the non-DMCA emails
do not fall under the mentioned categories. These emails
include encrypted emails and emails unrelated to abuse.

4.3 Consequences of Undesired Traffic

Along with the complaints, some emails mention the
steps the sender will take to minimize abuse from
Tor. 34.3% of the emails mentioned temporary block-
ing (19.8%), permanent blocking (0.2%), blacklisting
(9.8%) or other types of blocking (4.6%). The rest of
the emails notify the exit operators about the abuse. For
the most frequent form of blocking, temporary blocking,
the emails threaten durations ranging from 10 minutes to
a week. Some companies (e.g., Webiron) maintain dif-
ferent blacklists depending on the severity of the abuse.
The majority of the blacklists mentioned in the emails
are either temporary or unspecified. Only 18 emails men-
tioned permanently blocking the offending IP address. A
small fraction (less than 1%) of the emails ask exit oper-
ators to change the exit policy to disallow exiting to the
corresponding website.

We did not find any complaint emails from known
Tor discriminators, such as Cloudflare and Akamai.
Among the websites we crawled to quantify discrimina-
tion against Tor, we found complaints from Expedia and



Category Includes Percent
Network abuse DDoS, botnet, compromised machines 38.03%
Unauthorized access  Failed login attempts, brute-force attacks, exploits for gaining access  26.45%
Automated scan Port scans, vulnerability scans, automated crawling 14.15%
Spam Email, comment, and forum spam 9.01%
Harassment Threats, obscenity 1.05%
Other (unreadable encrypted emails, emails not reporting abuse) 11.31%

Table 3: Categories of the Non-DMCA Email Complaints (Total 8,370 emails)

Zillow. Expedia complained about an unauthorized and
excessive search of Expedia websites and asked exit op-
erators to disallow exiting to the Expedia website. Zil-
low’s complaint was less specific, about experiencing
traffic in violation of their terms and conditions.

—— Large — Medium —— Small

150

Number of Complaints

Oct=2016 Nov-2016 Dec-2016 Jan-2017
Time

Feb-2017

Figure 1: The cumulative number of complaints aver-
aged over our exits sharing the same bandwidth and pol-
icy. Solid lines represent default policy exits and dashed
lines represent RR policy exits.

4.4 Exit Properties and Complaints

We investigate the effects of two exit properties on the
number of corresponding abuse complaints received:
policy and bandwidth. For this analysis, we counted the
number of email complaints that explicitly mention the
IP address of our exits. We find that higher-bandwidth
exits received more complaints (Figure 1). This cor-
relation is statistically significant (Pearson’s product-
moment correlation = 0.98, p-value = 0.0016). However,
exit policy did not have any statistically significant cor-
relation with the number of complaints. We also did not
notice any significant differences between the types of
complaints that exits received.

4.5 Comparison with Average Tor Traffic

We estimate the average number of simultaneous Tor
users per day through the exits getting complaints and

Exit Family Avg. users Avg. complaints

apx 23,082.08 0.53
TorLandl 59,284.54 0.17
jahjah 1,206.30  0.19
Our exits 3,050.81 5.55

Table 4: Avg. simultaneous users and complaints per day

compare it with the total amount of abuse going through
the exits. Our goal is to understand how many Tor users
will be affected if we block an exit because of abuse com-
plaints. To do this, we collect the estimation of simulta-
neous Tor users per day from Tor Metrics [27]. Then
we collect the historical Tor consensus to compute how
much traffic went through an exit per day. If an exit
A handles e% of the total Tor bandwidth on day d and
the number of simultaneous users of Tor on d is u, then
approximately {55 of the users used A on day d? We
estimate users for each exit in Table 2 from September
2011 (the beginning of the Tor metrics data). We ex-
clude the Torservers exits because tracing the Torservers
exits in the historical consensuses is difficult as those ex-
its changed IP addresses and exit fingerprints more than
once.

Compared to the average number of Tor users, the
amount of abuse is insignificant (Table 4). However,
we are considering one abuse email as one instance of
abuse, but in practice one email can correspond of many
instances of abuse, for example, one brute-force attack
can consist of thousands of visits to a website.

S IP Address Blacklisting

We analyze how popular commercial IP blacklists treat
Tor relays. IP blacklisting can be in response to mali-
cious traffic originating from the IP, which we call re-
active blacklisting. We also observed proactive black-

2Even though the bandwidth is one of the main factors for selecting
an exit, the other factors such as the exit policy might affect which exits
will be selected. For our estimation, we do not consider the effect of
exit policies.



listing, blacklisting based upon a network’s pre-existing
reputation or the online service’s policy (e.g., the video-
on-demand service, Hulu, blocks access to all VPN end-
points). After discussing our data sources, we describe
how we classify blacklist entries into proactive black-
listing of Tor simply due a policy decision to deny ac-
cess from Tor, versus reactive blacklisting in response to
abuse. We then look at the amount of blacklisting of Tor
and compare it to VPN IP address spaces and the IP ad-
dress space of a large university in the USA. We analyze
the impact of relay uptime, consensus weight, and exit
policy on blacklisting behaviour.

5.1 Data Sources

For our study we were given access to a system that gath-
ers commercial IP threat intelligence, including black-
lists, from large Web companies. Facebook’s ThreatEx-
change [28] platform is a major contributor to the system.
This system has gathered roughly 2TB of data from 110
sources since July 25, 2015. We have anonymized the
names of some IP blacklists in our results.

Along with the hourly Tor consensus data, we use ad-
ditional methods to gather the set of Tor exit IP addresses
seen by servers. While the Tor consensus provides the
IP addresses used to reach exit relays (their “onion rout-
ing” IP addresses), a significant fraction of all exit relays
(6% to 10%) use a different IP address for connecting
to servers. To capture these IP addresses, we also asso-
ciate with each relay its exit IP address provided by Tor
DNSEL [29]. Tor DNSEL gathers the IP address used by
a relay for exiting traffic based on active testing.

5.2 Classifying Blacklist Entries

Given Tor’s reputation of transiting undesired traffic,
some blacklists proactively include Tor relay IP ad-
dresses. Since we are interested in the rate and impact of
undesired traffic Tor is currently producing, we must sep-
arate proactive blacklisting based upon historical events
from reactive blacklisting based upon current events.

We use several methods to classify blacklist entries
into proactive and reactive ones. In the simplest case,
the blacklist provides the reason behind inclusion, either
on an entry or on a list-wide basis. In some cases of reac-
tive listing, the blacklist even provides information about
the undesired traffic leading to blacklisting.

For those entries on lists that do not provide reasons
for inclusion, we look at the behavior of the list overall
to infer its reason for blacklisting. We infer that lists in-
cluding a large percentage of Tor IP addresses soon after
they appear in the consensus data likely reflect proac-
tive listing of the addresses. If more than 30% of Tor
relay addresses have been enlisted on a blacklist within

24 hours of them appearing in the consensus, we con-
sider that blacklist proactive. We consider the remaining
lists to be reactive. We discuss the details of deciding the
threshold of 30% in Section A of the Appendix.

Figures 2a and 2b compare the rate of blacklisting by
a proactive and a reactive blacklist. These graphs show
the rate of blocking Tor exit IP addresses and of non-exit
Tor IP addresses, whose blocking may be superfluous.
In a small number of cases, the time until blacklisting
is negative since the address was blacklisted before ap-
pearing in the consensus data, presumably from the IP
address’s prior use or the blacklisting of whole blocks
of addresses. Under our analysis, the blacklist Paid Ag-
gregator, a large paid provider of threat intelligence, is
a proactive blacklist since 76.6% of Tor IPs enlisted on
it were added within 24 hours of them first appearing in
the consensus (Fig. 2a). The distributions show that the
majority of the listed IP addresses get listed within a few
hours of them becoming Tor relays. We classify Con-
tributed Blacklist 12, a data source that contributes threat
intelligence to a community aggregation project, as reac-
tive since only 0.06% of all Tor IP addresses were added
within the first 24 hours of their appearance in the con-
sensus or the DNSEL (Fig. 2b).

Using both methods of classifying lists, we found 84
lists that either include Tor exits proactively or reactively.
Using the lists’ labels and names, we classified 4 black-
lists as proactive. We additionally classify 2 blacklists as
proactive based on the time taken by them to enlist Tor
IP addresses.

Identifying the proactive blacklisting of Tor exits also
sheds light on the nature of Tor blocking employed by
servers today. Proactive blacklisting implies that Tor
users share fate not only with other users of their exits but
also with all Tor users, including the ones in the distant
past. We find that 6 out of 84 (7%) large commercially
deployed blacklists proactively block Tor IP addresses.

5.3 Amount of Blacklisting

Figure 3 depicts the fraction of exit/non-exit relay IP ad-
dresses blacklisted by various lists during the observation
time frame. From 110 blacklists that the IP reputation
system gathers, 84 list Tor IP addresses in the observa-
tion time frame. For legibility, Figure 3 shows only the
lists that included more than 1% of either Tor non-exit
relays, Tor exit relay, or a VPN’s IP addresses.

We observe that a few blacklists list a large number of
Tor IP addresses, including non-exit relay IP addresses.
In particular, Paid Aggregator (the proactive list shown
in Fig. 2a) listed not only 48% of Tor exit addresses, but
also 35% of entry and middle relay IP addresses. Black-
listing non-exit relays is surprising, since non-exit relays
are not responsible for exiting traffic from the Tor net-
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work. Some relays have historically, at different points
in time, been both exit and non-exit relays in the Tor con-
sensus. In our analysis, we consider a relay an exit if it
had the Exit flag at any point in its lifetime. Doing so pro-
vides a conservative estimate for the number of non-exit
IP addresses that get blacklisted. In contrast, the Snort
IP blacklist (another proactive list) enlists nearly 37% of
exit IP addresses but less than 1% of non-exit relays.

5.4 Blacklisting of Tor vs. VPN nodes

VPN services are similar to Tor since they provide users
with the option to obscure their IP addresses. In addition,
like Tor exit relays, VPN nodes also egress traffic belong-
ing to many users who could be using the VPN service
for different purposes. In this section we compare black-
listing of Tor with that of popular VPN providers.

VPN providers like VPNGate [30] and Hide-
MyAss [31] publish lists of their free-tier endpoints,
making them good candidates for our study. Figure 2c
shows, that in February 2017, over 88% of Tor exits are
blacklisted (excluding the proactive blacklists) on one or
more of the commercially available blacklists. In com-
parison, 10% of VPNGate endpoints and 69% of HMA
endpoints appear on blacklists. All of these proxy ser-
vices are considerably more blacklisted as compared to
the IP space of a major university (three /16 prefixes used
by the university campus network), of which only 0.3%
IPs are blacklisted.

To have a fair comparison of the rate of blacklisting
with Tor, we need a set of VPN endpoint IP addresses
and a notion of when they first began to operate as VPN
endpoints (similar to the notion of exit relays and their
birth in the consensus). However, it is challenging to
gather the IP addresses of VPN nodes over time since
most VPN services do not archive such information. This
is in contrast with Tor, which archives information about
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Figure 4: Comparing the time taken for Tor exit IP ad-
dresses and HMA endpoints to get blacklisted.

its relays on an hourly basis. However, the VPN provider
HideMyAss (HMA) publishes a daily list of its free VPN
endpoints [31]. We crawled archived versions of this list
using the Wayback Machine [32] for IP addresses pub-
lished between June 14, 2014 and October 27, 2016.
We can then approximate the time when an IP address
first served as an HMA VPN endpoint, assuming this oc-
curs at least 60 days after the start of the time frame. In
this manner we collected a set of 4,234 HMA endpoints
and their first seen creation times. Of these, 1,581 IP
addresses became HMA endpoints after our IP address
reputation system started gathering blacklist data. We
analyze the blacklisting of these endpoints using the IP
reputation system.

Figure 3 shows the fraction of HMA endpoints black-
listed by various blacklists. Unlike for Tor relays, no
particular blacklist dominates in the listing of HMA IPs.
Figure 4 shows how quickly HMA endpoints get black-
listed compared to Tor exits; reactive blacklisting of both
occurs at a similar rate.
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Figure 3: Fraction of Tor relay and HMA VPN IP addresses listed in IP blacklists (including proactive and reactive).
Some feed names are derived based on the broad categories of undesired traffic they blacklist: e.g., ssh (badips-ssh,
dragon-ssh), content management systems/Wordpress (badips-http, badips-cms).

5.5 Exit policies and bandwidth

We looked for but did not find any associations between
various factors and blacklisting. In an attempt to counter
IP blacklisting and abusive traffic, the Tor community
has suggested that exit operators adopt more conserva-
tive exit policies [18]. Intuitively, a more open exit pol-
icy allows a larger variety of traffic (e.g., BitTorrent, ssh,
telnet) that can lead to a larger variety of undesired traffic
seen to originate from an exit. We analyze the exit relays
that first appeared in the consensus after the IP reputation
system started to gather data using the hourly consen-
suses of year 2015 and 2016. Since exit relays have a va-
riety of exit policies, we find which well-known exit pol-
icy (Default, Reduced, Reduced-Reduced, Lightweight,
Web) most closely matches the relay’s exit policy. To
compute this closeness between exit policies, we calcu-
late the Jaccard similarity between the set of open ports
on a relay and each well-known exit policy. (See Ap-
pendix B). In this way, we associated approximate exit
policies to 21,768 exit relays. We found that in the last 18
months, only 1.2% of exit relays have exhibited different
well-known exit policies, and excluded these from our
analysis. In the resulting set of exits, we assigned 81%
to Default, 17% to Reduced, 0.6% to Reduced-Reduced,
0.5% to lightweight and 0.4% to Web policy.

We also compute the uptime (in hours) for each of the
exit relays as the number of consensuses in which the
relay was listed. In addition, we maintain the series of
consensus weights that each relay exhibits in its lifetime.
Higher consensus weights imply more traffic travelling
through the relay, proportionally increasing the chance
of undesired traffic from a relay. A high uptime increases
the chance of use of a relay for undesired activities.

We trained a linear regression model on the policies,
scaled uptimes, and consensus weights of exit relays,
where the observed variable was the ratio of hours the IP

address was blacklisted (reactive blacklisting only) and
its overall uptime. Based on the coefficients learned by
the regression model, we conclude that policy, consensus
weight, and relay uptime have very little observed asso-
ciation on IP blacklisting of Tor relays. We provide more
details about the regression model in Appendix C.

5.6 Our Newly Deployed Exit Relays

As described in Section §3, we operated exit relays of
various bandwidth capacities and exit policies to actively
monitor the response of the IP reputation system. In
this subsection, we analyze the sequence of blacklisting
events for each exit relay that we ran. Figure 5 shows the
timeline of blacklisting events for each of the exit relays
we operated. Each coloured dot represents an event. An
event is either the appearance of a relay on a blacklist or
its appearance in the consensus (an up event).

Prior to launching the exits, none of our prospective
relays’ IP addresses were on any blacklist. We see that
within less than 3 hours of launching, feeds like Snort
IP listed all our relays, supporting our classification of
Snort IP as a proactive blacklist. Additionally, both Snort
IP and Paid Blacklist (also classified as proactive) block
our relay IP addresses for long periods of time. Snort
IP enlists all of relays, and did not remove them for the
entire duration of their lifetime. Paid Blacklist enlists IP
addresses for durations of over a week. Blacklists such
as badips-ssh (for protecting SSH) and badips-cms (for
protecting content management systems such as Word-
press and Joomla) have short bans spanning a few days.
Contributed Blacklist 12 has the shortest bans, lasting
only a few hours. We consider Contributed Blacklist 12’s
blacklisting strategy in response to undesired traffic to be
in the interest of both legitimate Tor users and content
providers that do not intend to lose benign Tor traffic.
On November 29, 2016, we turned off all of our relays
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Figure 5: Blacklisting of our exit relays over time. Each coloured dot shows the instant when a relay was on a blacklist.
Snort IP and Paid Blacklist have long term bans while other blacklists enlist IPs for short periods of time ranging from

hours to a few days.

to observe how long a proactive blacklist like Snort IP
would take to de-enlist our relays. We observe that such
blacklists drop our relays just as fast as they enlist them,
suggesting a policy of crawling the Tor consensus.

Note that a synchronised absence of data from any
blacklist, while the relays are up, represents an outage
of the IP reputation system.

6 Crawling via Tor

To quantify the number of websites discriminating
against Tor, we performed crawls looking both at front-
page loads, as in prior work [2], and at search and login
Sfunctionality. We crawled the Alexa Top 500 web pages
from a control host and a subset of Tor exit relays. These
crawls identify two types of discrimination against Tor
users: (1) the Tor user is blocked from accessing con-
tent or a service accessible to non-Tor users, or (2) the
Tor user can access the content or service, but only after
additional actions not required of non-Tor users—e.g.,
solving a CAPTCHA or performing two-factor authenti-
cation.

6.1 Crawler Design

We developed and used a Selenium-based interactive
crawler to test the functionality of websites. We per-
formed three types of crawls: (1) Front-page crawls at-
tempt to load the front page of each website. We repeated
the crawl four times over the course of six weeks. (2)
Search functionality crawls perform front-page loads and
then use one of five heuristics (Table 5) to scan for the

presence of a “search box”. Upon finding the search box,
the crawler enters and submits a pre-configured search
query. Our crawler found and tested the search func-
tionality of 243 websites from the Alexa Top 500. We
performed the search functionality crawl once. (3) Login
Sfunctionality crawls load front pages and scan them for
the presence of a “login” feature. Upon finding the fea-
ture, and if it has credentials for the webpage available,
the crawler authenticates itself to the site (using Face-
book/Google OAuth when site-specific credentials were
unavailable). We created accounts on OAuth-compatible
websites prior to the crawl. Since the created accounts
had no prior history associated with them, we speculate
that they were unlikely to be blocked as a result of un-
usual behavior. For example, we found that LinkedIn
blocks log ins from Tor for accounts with prior log in
history, but not for new accounts. Our crawler found
and tested the login functionality of 62 websites from
the Alexa Top 500. We performed the login functionality
crawl once.

The crawler records screenshots, HTML sources, and
HARs (HTTP ARchives) after each interaction. Our in-
teractive crawler improves upon previous work in sev-
eral ways. First, it uses a full browser (Firefox) and in-
corporates bot-detection avoidance strategies (i.e., rate-
limited clicking, interacting only with visible elements,
and action chains which automate cursor movements
and clicks). These features allow it to avoid the (bot-
)based blocking observed while performing page-loads
via utilities such as curl and other non-webdriver li-
braries (urllib). Second, its ability to interact with
websites and exercise their functionality allows us to



Heuristic Coverage
1. Visible and clickable textbox elements contain- 98
ing search related keywords (q, query, querytext,

search) in their element name, id, value, or label

are assumed to be search boxes.

2. The above heuristic is repeated while considering 81

all input DOM elements.

3. If the DOM contains exactly one visible and click- 22
able textbox element, it is assumed to be a search box.

4. If the DOM contains exactly one visible and click- 12

able input element with a defined max-length, it is
assumed to be a search box.

5. If the DOM contains exactly one visible and click- 30
able input element, it is assumed to be a search box.

Table 5: Heuristics used to identify search input boxes.
Heuristics are described from most specific to least spe-
cific. Coverage indicates the number of sites that were
identified using the corresponding heuristic.

identify cases where discrimination occurs beyond the
front page — e.g., www.tumblr.com serves Tor users
CAPTCHAs only after they submit a search query, and
www.imdb.com blocks Tor users when they attempt to
log in.

6.2 Relay selection

We randomly selected 100 exit relays from the set of all
exit relays that supported HTTP(S) connections (i.e., the
exit policy allows outbound connections to ports 80 and
443). In addition to these randomly sampled relays, we
also conducted crawls through our own relays (described
in Table 1) and a university-hosted control host.

Since we performed our crawls over a six-week pe-
riod, several of the selected exit relays intermittently
went offline, with a total of 0, 12, 19, and 28 offline dur-
ing crawls 1-4, respectively. We account for the result-
ing page-load failures by excluding the failures from our
analysis.

6.3 Identifying discrimination

In each of our experiments we simultaneously performed
crawls exiting through all online sampled exits and our
university-hosted control host. To identify discrimina-
tion of a selected exit relay, we first rule out cases of
client and network errors through HAR file analysis. We
use the HAR files to verify, for each page load, that (1)
the requests generated by our browser/client were sent to
the destination server (to eliminate cases of client error),
and (2) our client received at least one response from the
corresponding webpage (to eliminate cases of network
errors). If, for a given site, either the control host or the
selected exit relay did not satisfy both these conditions,

we did not report discrimination due to the possibility of
a client or network error.

Next, we compare the crawler-recorded screenshots of
the control server and each selected exit relay using per-
ceptual hashing (pHash) [33], a technique that allows us
to identify the (dis)similarity of a pair of images. We re-
port images with high similarity scores (pHash distance
< 0.40) as cases where no discrimination occurred and
images with high dissimilarity (pHash distance > 0.75)
as cases of discrimination, while flagging others for fur-
ther inspection. The thresholds were set so that only
pages with extreme differences in content and structure
would be automatically flagged as cases of discrimina-
tion, while similar pages were automatically flagged as
cases of non-discrimination. In general, minor changes
in ads/content (e.g., due to geo-location changes) do not
result in flagging. We set the thresholds using data ob-
tained from a pilot study (Figure 6).

140} B Discrimination
120} : : HL No Discrimination
100F i @ Overlap

Samples observed

8.0 0.2 0.4 0. 0.8 1.0
pHash distance between screenshots

Figure 6: Results of pilot study to identify pHash dis-
tance thresholds for automatically identifying cases of
(non) discrimination. We manually tagged 500 ran-
domly chosen samples (i.e., pairs of control and exit re-
lay screenshots of the same website) and computed the
pHash distances. Based on the above distribution, we
classified distances < 0.40 as “non-discrimination” and
distances > 0.75 as “discrimination”. Instances having
pHash distances in the 0.40 to 0.75 range were manually
inspected and tagged.

Then, we classified as discrimination cases where exit
relays received HTTP error codes for requests that our
control host successfully loaded with a 200 status. Fi-
nally, we manually tag the screenshots of remaining
cases to identify more subtle discrimination—e.g., a
block-page served with a 200 status.

6.4 Results

Table 6 summarizes the main results of our three types of
crawls over compatible websites in the Alexa Top 500.
Here, we show the fraction of interactions on which dis-
crimination was detected. We find that 20.03% of all
Alexa Top-500 (A-500) website front-page loads showed
evidence of discrimination against Tor users, compared



to 17.44% of the search-compatible (S-243) and 17.08%
of the login-compatible (L-62) website front-page loads.
When exercising the search functionality of the 243
search-compatible websites, we see a 3.89% increase in
discrimination compared to the front-page load discrim-
ination observed for the same set of sites. Similarly,
when exercising the login functionality of the 62 login-
compatible websites, we observe a 7.48% increase in dis-
crimination compared to the front-page discrimination
observed for the same set of sites.

Websites Interaction Discrimination observed
A-500 Front page 20.03%
S243 Front page 17.44%

Front page + Search  21.33% (+3.89%)

Front page 17.08%

L-62

Front page + Login ~ 24.56% (+7.48%)

Table 6: Fraction of interactions blocked from 110 ex-
its. A-500 denotes the Alexa Top 500 websites, S-243
denotes the 243 search-compatible websites, and L-62
denotes the 62 login-compatible websites.

Figure 7a shows the distribution of discrimination (for
any interaction) faced by relays from websites in the
Alexa Top 500. We find that no relay experiences dis-
crimination by more than 32.6% of the 500 websites,
but 50% of the exit relays are discriminated against by
more than 27.4% of the 500 websites. Figure 7b shows
the distribution of discrimination performed by websites
against Tor exit relays. Here, we see that 51% of the
websites perform discrimination against fewer than 5%
of our studied exits, while 11% of websites perform dis-
crimination against over 70% of our studied exits.

We now examine various factors associated with Tor
discrimination. Since we did not (and in many cases can-
not) randomly assign these factors to websites or relays,
these associations might not be causal.

Hosting Provider. Figure 8 shows the fraction of relays
discriminated against by websites hosted on four of the
six most-used hosting platforms. We find that Amazon-
and Akamai-hosted websites show the most diversity
in discrimination policy, which we take as indicative
of websites deploying their own individual policies and
blacklists. In contrast, CloudFlare has several clusters of
websites, each employing a similar blacklisting policy.
This pattern is consistent with CloudFlare’s move to al-
low individual website administrators to choose from one
of several blocking policies for Tor exit relays [1]. Fi-
nally, we see 80% of Chinal69- and CloudFlare-hosted
websites perform discrimination against at least 60% of
our studied relays.

Relay Characteristics. Our analysis of the association
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Figure 7: Distribution of discrimination by Alexa Top
500 websites against 110 exit relays.
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Figure 8: Distribution of discrimination performed by
websites hosted on four of the six most popular hosting
platforms.

between exit-relay characteristics and the discrimination
faced by them found no significant correlations when ac-
counting for relay-openness (fraction of ports for which
the exit relay will service requests) or for the age of the
relay. We found a small positive correlation (Pearson
correlation coefficient: 0.147) between the relay band-
width and degree of discrimination faced, but the result
was not statistically significant (p-value: 0.152). Fig-
ure 9 presents these results graphically. We further ana-
lyze the impact of relay characteristics on discrimination
performed by websites using popular hosting providers .
We find that only Amazon has a statistically significant
positive correlation between discrimination observed and
relay bandwidth (Pearson correlation coefficient: 0.247,
p-value: 0.015). These results are illustrated in Fig-
ure 10.

Service Category. We now analyze how aggressively
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Figure 9: Relationship between relay characteristics and
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Figure 10: Impact of relay characteristics on discrimina-
tion performed by websites hosted by Amazon.

four different categories of sites—search engines, shop-
ping, news, and social networking—discriminate against
Tor exit relays. We categorize sites using the McAfee
URL categorization service [34]. We find that search
engines are the least likely to discriminate against exit
relays, with 83% of all search engines discriminating
against fewer than 20% of our studied exit relays, com-
pared to 30% of social networking sites, 32% of shop-
ping sites, and 53% of news sites. We also find social net-
working and online shopping sites share similar blocking
behavior. Websites in these categories are also observed
to be the most aggressive—with 50% of them blocking
over 60% of the chosen relays. Figure 11 illustrates the
results.

The Evolution of Tor Discrimination. =~ We now fo-
cus on discrimination changes over time. For this ex-
periment, we conducted four crawls via our own ten exit
relays to the Alexa Top 500 websites. Let Day 0 denote
the day when we set the relay’s exit flag. We conducted
crawls on Day -1, Day 0, and once a week thereafter.
Table 7 shows the fraction of websites found to to dis-
criminate against each exit set during each crawl. We
observe increases in discrimination when the exit flag is
assigned. We can attribute some of this can to our im-
proved crawling methodology deployed on Day O (the
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Figure 11: Distribution of discrimination performed by
websites in various categories.

Day -1 crawl utilized the crawler from Khattak et al.; see
below), although we note that the IP addresses used by
our exit relays were never used by other Tor exit relays
in the past, and did not appear in any of our studied com-
mercial blacklists before Day 0, while they immediately
manifested after setting the exit flags.

Configuration Day-1 Day0 Wk.2 Wk.3 Wk.4
Large-Default NA 17.0 19.0 21.1 254
Medium-Default 9.4 20.5 24.4 25.6 24.8
Medium-RR 9.9 18.3 24.1 22.7 24.7
Small-Default 9.3 20.3 20.9 239 23.6
Small-RR 9.4 20.5 20.7 25.7 253

Table 7: Percentage of discriminating page loads for each
set of deployed relays.

The high amount of discrimination observed on our
Day-0 crawl for all exit relays is indicative of proactive
discrimination against Tor exit relays. Our results do not
indicate differences due to relay cateogry in the amount
of discrimination experienced.
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Figure 12: Impact of methodological changes on mea-
sured discrimination from data generated by a single
front-page crawl.

Measurement Methodology. = We now measure the
impact of changes in our discrimination identification
methodology compared to previous work by Khattak et
al. [2]. The key differences between the methodologies
are: (1) The measurements conducted by Khattak et al.



are limited to identifying front-page discrimination. Our
crawler also tests search and login interactions. Table
6 presents the impact of this feature. (2) Khattak et al.
identify discrimination using the difference in HTTP sta-
tus codes returned by the control and test nodes. This
method is prone to underestimating discrimination due
to the inability to detect block pages that return a HTTP
200 OK status code. Our method relies on screenshot
differences and HTTP status codes as a signal for dis-
crimination. As a result, we are able to detect discrim-
ination performed by sites such as 1livejournal. com,
hdfc.com, and glassdoor. com. (3) Khattak et al. rely
on sending HTTP requests for front pages of websites
using the python urllib2 library. Although they mod-
ify the user agent of their crawler to match a regular web
browser, they are easily identifiable as an irregular user
since they do not load third-party objects and JavaScript.
Such crawlers are blocked by many websites and bot-
mitigation tools [35]. In contrast, we perform complete
page loads, including third-party content and execution
of JavaScript. As a consequence, our crawls are slower,
requiring around 12 hours for 500 page loads (compared
to 1-2 minutes required by the url1ib2 crawler).

To understand the impact of (2) and (3), we compare
the discrimination results obtained from a single front-
page crawl performed by both crawlers. We started both
crawls on the same day, on the same set of websites, us-
ing the same set of 100 randomly sampled exit relays.
The results, illustrated in Figure 12, confirm that previ-
ous work underestimates the amount of discrimination.

7 Privacy-sensitive Exit Logging

While our crawls systematically explore popular web-
sites, they might not be typical of actual Tor usage. Thus,
we performed privacy-sensitive logging on our deployed
exit relays to measure how commonly users interacting
with Alexa Top 1M web pages experienced failed TLS
handshakes or HTTP requests This observational dataset,
based on actual Tor-user web traffic distributions and
user interactions, provides us with a picture of the dis-
crimination actually encountered by users.

7.1 Logging Approach

In order to measure the number of failed TLS handshakes
and HTTP requests, we developed a custom logger. Al-
though tools such as PrivEx [36], Histore [37], and Priv-
Count [38] were specifically built for measuring charac-
teristics of Tor exit traffic, they are not suitable for our
study for two reasons: First, they currently do not have
the capability to inspect HTTP and TLS traffic head-
ers. Adding such functionality to the tools requires mod-
ifying the Tor relay source code—possibly introducing

users of our relays to new vulnerabilities. Second, they
were built with the goal of performing secure data ag-
gregation across multiple relays. Since a single entity
owned and operated all of the relays used in our study,
this feature was unnecessary for our purposes.

We maintain counters for several events of interest
associated with users browsing websites in the Alexa
Top 1M. Our approach, designed after consultation with
members of the Tor developer community, takes precau-
tions to avoid de-anonymization of users. Since neither
the Tor users nor the service operators were the subjects
of our study, we were exempt from an IRB review.

First, we use bucketing and split the Alexa Top 1M
websites into exponentially growing sets based on their
Alexa ranks, as follows: The first set contains the top
100 websites (ranked 1-100) and the nth set for n > 1
contains the top 100 x 2”2 41 to 100 x 2"~ websites.
We keep a separate event counter for each set. Second,
we maintain our event counters in memory and write to
disk only once a day. Doing so allows our event counters
to attain higher count values, increasing anonymity-set
sizes. Third, to deal with the possibility of encountering
cases where 24 hours does not suffice to achieve reason-
ably high anonymity-set sizes—e.g., if only one person
visited a site during a 24 hour period—we round up each
event counter to the nearest multiple of eight before writ-
ing to disk. A similar approach is used by Tor metrics [3]
for reporting counts of bridge users per country.

‘We maintained per-bucket event counters for the num-
ber of: (1) HTTP requests to website front pages, (2)
error status codes observed in their corresponding re-
sponses, (3) HTTP(S) handshakes initiated, and (4)
timed-out handshakes encountered. Additionally, we
also maintained a counter for the number of packets sent
through each open port.

7.2 Results

Table 8 shows the percentage of failed HTTP requests
and incomplete HTTPS handshakes encountered by
users of our exit relays. We find that the fraction of in-
complete handshakes steadily increases over time. We
attribute the steep increase in HTTP error codes received
during weeks four and five to our relays being (ab)used
in a scraping attempt on a popular website (we received
a complaint notice due to this behavior). Besides this
sudden increase, we see that the fraction of HTTP errors
accords with data observed through our crawls, but the
fraction of incomplete HTTPS handshakes runs higher.
This is likely because incomplete handshakes provide
only very noisy indicators for user discrimination, with
many reasons for them to occur naturally.

HTTP requests and error response codes. For
exiting packets using the HTTP protocol, iff the URI



Week 1 2 3 4 5 6

HTTP 15.8 181 198 328 334 179
HTTPS 363 350 41.1 452 479 49.6

Table 8: The percentage of failed HTTP requests and
incomplete HTTPS handshakes observed over time.

on the HTTP request was identical (ignoring case) to
a Top IM website, we incremented a front-page re-
quest event counter associated with the set containing the
site. For every matching request, we maintained state
to identify the corresponding response packet. If the
corresponding response packet contained an error status
code (4XX/5XX), we incremented an error-status event
counter associated with the corresponding set. We break
down the fraction of errors by website ranks and time in
Figure 13a. We see that the fraction of error response
codes is nearly evenly distributed across each set, indi-
cating that errors are independent of website ranks.

HTTPS handshake initiation and failure. The pro-
cedure for HTTPS is similar to that for HTTP. However,
we use the SNI value of client-hello handshake initiation
packets instead of the URI of HTTP requests. Further-
more, we look for handshake failures and timed-outs in-
stead of HTTP errors. The results in Figure 13b show a
strong increasing trend in incompletion rates over time.

8 Discussion and Future Work

Limitations.  Our studies each come with their own
limitations, some resulting from our desire to protect the
privacy of Tor users, others from the limited data sets
available for study. Neither our set of emails nor our set
of blacklists are complete. Given that Tor assigns traf-
fic to exits in a mostly random fashion, we believe the
emails from our sample to be representative of the com-
plaints during their time periods for exits with similar
exit policies. While there are blacklists that we were not
able to observe during the period of our study, the set of
blacklists used in our analysis includes numerous types
from a wide range of suppliers, leading us believe that
they capture all common blacklisting phenomena. Our
crawls, while more in-depth than prior efforts [2], were
too time-consuming to run often enough to gain statisti-
cal guarantees about discrimination by any one website.
Nevertheless, taken together, they show that discrimina-
tion is common and sometimes subtle.

Implications for Tor. The large amounts of block-
ing and discrimination identified by our crawling and
privacy-sensitive measurements suggest that Tor’s utility
is threatened by online service providers opting to stifle
Tor users’ access to their services (§6 & §7).

From studying blacklists we learned that some, but
not all, proactively add Tor exit IP addresses (§5), pre-
sumably in response to prior undesired traffic and an ex-
pectation of more. This result highlights that Tor users
fate-share with not just the Tor users sharing their cur-
rent exit relay, but all Tor users—present and past. Other
blacklisting appears to be reacting to undesired traffic,
suggesting that blocking may decrease if Tor can reduce
the amount of abuse it emits. Such a reduction may
even, over time, decrease proactive blacklisting as Tor’s
reputation improves. These findings suggest the utility
to implement any privacy-sensitive abuse-reduction ap-
proaches for Tor.

From the emails, we learned of the types of undesired
traffic that server operators find concerning enough to
warrant sending a complaint. Of the types of abuse iden-
tified in email complaints (§4), the vast majority—the
DMCA complaints—appear irrelevant to blocking since
DMCA violators largely use peer-to-peer services. Fur-
thermore, at least in our sample they are no longer com-
mon (Table 2). Of the remaining complaints, nearly 90%
related to large-scale abuse, such as excessive connec-
tion attempts, scanning, brute-force login attempts, and
spam. While the rate of complaining might not be pro-
portional to the rate of undesired traffic, it may provide
some insights into the nature of the most troubling abuse
exiting the Tor network. The exit policies have no sig-
nificant impact on reducing abuse complaints and rate of
discrimination against Tor users.

Given the large footprints of the observed abuse, we
believe future research should seek to provide tools to
curb such abuse while preserving privacy and Tor func-
tionality. We envision Tor nodes using cryptographic
protocols, such as secure multi-party computation and
zero-knowledge proofs, to detect and deter users pro-
ducing large amounts of traffic in patterns indicative of
abuse. For example, Tor could compute privacy-sensitive
global counts of visits to each threatened domain and
throttle exiting traffic to ones that appear over-visited.

Implications for online services. Combining our study
results, we can put the difficulties facing Tor users and
online service operators into perspective: at most 182
email complaints per 100K Tor users, and over 20% of
the top-500 websites blocking Tor users. Given that Tor
users do make purchases at the same rate as non-Tor
users [6], this response may be excessive and operators
might wish to use less restrictive means of stifling abuse.

Operators can aid Tor in developing approaches to
curb abuse or unilaterally adopt local solutions. For ex-
ample, instead of outright blocking, servers could rate-
limit users exiting from Tor for certain webpages (e.g.,
login pages). Indeed, CloudFlare is developing a crypto-
graphic scheme using blindly signed tokens to rate limit
Tor users’ access to websites it hosts [39].
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Figure 13: Fraction of errors encountered by users visiting the Top 1M websites over time. The URL category S1
consists of the top (1-100) websites and S (n > 2) consists of sites in the top [100 x 2% + 1 to 100 x 2"~ '] ranks.

Ultimately, we do not view IP-based blacklisting as
a suitable long-term solution for the abuse problem. In
addition to Tor aggregating together users’ reputations,
[Pv4 address exhaustion has resulted in significant IP ad-
dress sharing. IPv6 may introduce the opposite problem:
the abundance of addresses may make it too easy for a
single user to rapidly change addresses. Thus, in the long
run, we believe that online service operators should shift
to more advanced ways of curbing abuse; ideally, ones
compatible with Tor.
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Appendix

A Picking threshold values for proactive
blacklisting

We classify a blacklist as proactive if it enlists a large
fraction of Tor exit relays within the first 24 hours of
them appearing in the consensus. In order to decide
the threshold for the fraction of Tor exit relays that, if
blocked within 24 hours, we should consider the black-
list, we analyze the value of the fraction for all blacklists.
We find two blacklists: Snort IP and Paid Aggregator
blacklist 37% and 31% of all Tor exits within 24 hours,
respectively. All other blacklists listed fewer than 5% of
Tor IP addresses within 24 hours. This large difference
in the behaviour of blacklists encouraged us to pick the
threshold as 30%.

B Classifying exit policies

In this section we describe our method for classifying the
exit policies of all exit relays observed in 2015 and 2016.
Since each relay could potentially have an arbitrary set
of ports open (from the 65,535 possible ports), compar-
ing the openness of exit policies is difficult. To simplify
the process, we parse the exit policy of each relay to ex-
tract the set of open ports and then compute the Jaccard
similarity between the relay’s open ports and each of the
well-known exit policies that Tor supports (Default, Re-
duced, Reduced-Reduced, Lightweight and Web). We
classify a relay into one of the 5 categories based on the
Jaccard similarity value. To ensure that the similarity in
policy is large enough, we classify the relay to the cat-
egory of highest similarity, provided that the similarity
value is at least 0.7. Only the relays with a high enough
similarity value with any of the well known exit policies
are considered for further analysis.

C 1P blacklisting and relay characteristics

We train a linear regression model to find the impact of
relay characteristics like uptime, policy, and consensus
weight on the time a relay spends on reactive blacklists.
The observed variable is the ratio of hours spent on the
blacklist to the uptime of the relay. We trained the model
on 20,500 exit relays’ data (with feature scaling) and
found that the coefficients learned for all the factors are
extremely small (consensus weight = -0.00007, uptime =
0.009, policy =-0.00001). This shows that these factors
have very little impact on blacklisting of relays. It also
suggests that changing to more conservative exit policies
does not reduce the chances of relays getting blacklisted.



