
How to 0wn the Internet in Your Spare Time

Stuart Staniford
Silicon Defense

Eureka, CA
stuart@silicondefense.com

Vern Paxson
ICSI Center for Internet Research (ICIR)

and
Lawrence Berkeley National Laboratory

vern@

�

icir.org, ee.lbl.gov

�

Nicholas Weaver
Computer Science

University of California
Berkeley, CA

nweaver@cs.berkeley.edu

April 1, 2002

What could you do if you 0wn’d a million hosts?

Launch: immensely diffuse DDOS attacks.

� no need to spoof addresses

� can make low-rate requests

� Can make legitimate requests

� Way beyond state-of-the-art to defend against.

� Or: launch 100 concurrent, well-targetted DDOS attacks

� root name servers, NANOG/Bugtraq, CNN,

� critical infrastructure?

What could you do if you 0wn’d a million hosts?, con’t

Access: sensitive information.

Passwords, credit card numbers, address books,

archived email, patterns of user activity, illicit content.

Search: for needles in haystacks.

e.g., search for particular admin’s password

e.g., grep for classified information

e.g., crack crypto keys

Confuse: by corrupting information,

sending out misinformation.

Immense damage: cyberwarfare between nations; terrorism.

How to 0wn a million hosts? — Worms.

Self-replicating/self-propagating code.

Spread by exploiting flaws in open services.

(As opposed to viruses, which require user action to spread.)

Not new — Morris Worm of November 1988:

� 10% of Internet hosts infected.

Many since: Ramen, Cheese, sadmind, Goner, Lion,

Badtrans, Adore � � �

How bad can it get?

Code Red.

Code Red:

Initial version released July 13, 2001.

Exploited known bug in Microsoft IIS Web servers.

Payload: web site defacement.

Spread by random scanning of 32-bit IP address space.

But: failure to seed random number generator � linear growth.

“CRv2” released July 19, 2001.

Payload: flooding attack on www.whitehouse.gov.

Bug lead to it dying for date

� ��

th of the month.

But: this time random number generator correctly seeded.

Growth of Code Red Worm

Hour (PDT)

N
ew

 h
os

ts
 p

er
 m

in
ut

e

4 6 8 10 12 14 16

0
50

0
10

00
15

00

Spread of Code Red:

Monitoring two class B’s � 300,000 infected hosts.

Analytic model:

� � total number of vulnerable hosts

� compromise rate, new hosts/host/hour

� ��� � � proportion of vulnerable machines

compromised at time

�

Then:

� ��� � � � � 	�
� � �

� � � 	�
� � �

� logistic growth.

Spread of Code Red, con’t:

Discrepancies in part due to background scanning rate.

Fit gives � �
�

�

.

That night, Code Red dies � � �

� � � except for hosts with inaccurate clocks!

It just takes one of these to restart the worm come the first of

the next month!

July 31 / August 1, 2001.

Achieving greater virulence — Code Red II:

Released August 4, 2001.

Comment in code: “Code Red II.”

But in fact completely different code base.

Payload: a root backdoor, resilient to reboots.

Bug: crashes NT, only works right on Windows 2000.

Localized scanning:

� scans its own /16 with probability

�
�

� scans its own /8 with probability

�
�

� scans randomly with probability

�
�

Kills Code Red I.

Achieving greater virulence — Nimda:

Released September 18, 2001.

Multi-mode spreading:

� attack IIS servers via infected clients

� email itself to address book as a virus

� copy itself across open nework shares

� modifying Web pages on infected servers w/ client exploit

� scanning for Code Red II and sadmind backdoors (!)

� worms form an ecosystem!

Leaped across firewalls.

Payload: still unknown.

Onset of NIMDA

Day Sept/Oct 2001

C
on

n.
 /

ho
ur

10 15 20 25 30 35

0
50

00
01

00
00

0
20

00
00

30
00

00

Onset of NIMDA

Time (PDT) 18Sep01

C
on

n
/ S

ec

6:00 6:30 7:00 7:30 8:00

0
20

40
60

80
10

0
12

0
14

0

0 20 40 60 80

0
50

00
10

00
0

20
00

0

Days Since July 18, 2001

D
is

tin
ct

 R
em

ot
e

H
os

ts
 A

tta
ck

in
g

LB
N

L

Ju
l 1

9

A
ug

 1

S
ep

 1

S
ep

 1
9

O
ct

 1

Code Red
Code Red II
Nimda

0 50 100 150

0
50

0
10

00
15

00
20

00

Days Since Sept. 20, 2001

D
is

tin
ct

 R
em

ot
e

H
os

ts
 A

tta
ck

in
g

LB
N

L

O
ct

 1

O
ct

 1
5

N
ov

 1

N
ov

 1
5

D
ec

 1

D
ec

 1
5

Ja
n

1

Ja
n

15

Nimda
Code Red 1
Code Red 2

Spreading faster — distributed coordination (Warhol worms):

Idea: reduce redundant scanning.

Construct permutation of address space.

Each new worm instance starts at random point.

Worm instance that “encounters” another instance re-randomizes.

Idea: reduce slow startup phase.

Construct a “hit-list” of vulnerable servers in advance.

Then: for 1M vulnerable hosts, 10K hit-list, 100 scans/worm/sec,

1 sec to infect � 99% infection in 5 minutes.

Spreading still faster — Flash worms:

Idea: use an Internet-sized hit list.

Where do you get it?

� brute-force scanning — entire addr. space 2hr w/ OC-12

(thanks for the cover, Code Red!)

� distributed scanning — use zombies (10 @ LBNL, 2001)

� stealth scanning — spread it over several months

� DNS searches — e.g., www.domain.com

� spiders — ask the search engines

� just listen — P2P, or exploit existing worms

Flash worms, con’t:

Initial copy of the worm has the entire hit list.

Each generation, infects � from the list, gives each
� �

� of list.

(Or, point them to a well-connected host that serves up

portions of the list. Or a hybrid.)

How big is the list?

e.g., 9M addresses, sorted & differenced & gzip’d: 13 MB.

So dominant traffic is

�

copies of the payload.

Need to engineer for locality, failure & redundancy.

But: � � � �

requires � �

generations to infect

� � �

hosts.

� Tens of seconds.

How can we defend against Internet-scale worms?

Time scales rule out human intervention.

� Need automated detectors, response.

(And perhaps honeyputs to confuse scanning?)

Very hard research question!

And it’s only half of the problem � � �

Contagion worms:

Suppose you have two exploits:

��
� (Web server) and

��
� (Web client).

You infect a server (or client) with

�
� (

�
�).

Then you � � � wait. (Perhaps you bait, e.g., host porn.)

When vulnerable client arrives, infect it.

You send over both

�
� and

�
� .

As client happens to visit other vulnerable servers � infects.

Contagion worms, con’t:

No change in communication patterns

other than slightly larger-than-usual transfers.

How do you detect this?

How bad can it be?

Exploiting Peer-to-Peer networks:

� Likely only need a single exploit, not a pair.

� Often, peers running identical software..

� Tend to have rich interconnection patterns to piggyback on.

� Often used to transfer large files.

� Not mainstream — less vulnerability assessment, monitoring.

Exploiting Peer-to-Peer networks, con’t:

� Often give access to user’s desktop rather than server.

� “Grey” content: users less likely to mention unusual activity.

� Come with built-in control / data dissemination plane.

� � � � and can be Very Large � � �

0 10 20 30 40 50 60

0
50

0
10

00
15

00
KaZaA / Morpheus Traffic at a Large University

Days since November 28, 2001

G
B

 /
da

y

1 3 5 7 9 12 15 18 21 24 27 30

New KaZaA / Morpheus Hosts Seen Each Day

November

0
20

00
00

40
00

00

The threat of contagion worms:

If you 0wn’d a single university, then last November � � �

� � � you could have 0wn’d 9,127,468 additional hosts.

How fast?

Certainly, much faster than 1 month.

Degree of remote hosts as seen at Univ.: beautiful power law.

Epidemic Spreading in Scale-Free Networks (Phys. Rev.

Letters Apr. 2001) � this could be quite bad!

Degree of Remote KaZaA Host

P
[X

 >
=

 x
]

1 5 10 50 100

0.
00

00
1

0.
00

1
0.

1

Envisioning a Cyber Center for Disease Control:

Identify outbreaks

Need decentralized communication mechanisms, multiple

communication channels, diverse network of sensors.

Rapid pathogen analysis (how it spreads; what else it does)

Need on-call experts, state-of-the-art analysis tools, libraries

of toolkit components, archive of previous worms, lab w/

virtual machines running popular OS’s.

Useful even after the fact, esp. in “fog of war.”

Envisioning a Cyber-Center for Disease Control, con’t:

Fight infections

Mechanisms to propagate signatures out to body of agents.

Major issues over control, liability, resilience.

Anticipate new vectors

Track rise of new applications, analyze associated threat.

Envisioning a Cyber-Center for Disease Control, con’t:

Proactively devise and deploy detectors

E.g., develop KaZaA IDS plug-in.

Resist future threats

Vet applications for security soundness, foster research

into resilient application design paradigms (that are some-

how commercially viable).

The CDC sounds hopelessly hard.

Yet if a nation (i) takes the possibility of cyberwarfare seriously,

and (ii) wants an open Internet � � �

� � � what’s the alternative?

