
Addressing the Threat of
Internet Worms

Vern Paxson

ICSI Center for Internet Research

 and Lawrence Berkeley National Laboratory

vern@icir.org

February 22, 2005

What is a Worm?

• Self-replicating/self-propagating code.

• Spreads across a network by exploiting flaws
in open services.
– As opposed to viruses, which require user action

to quicken/spread.

• Not new --- Morris Worm, Nov. 1988
– 6-10% of all Internet hosts infected

• Many more since, but for 13 years none on
that scale, until ….

Code Red

• Initial version released July 13, 2001.

• Exploited known bug in Microsoft IIS Web
servers.

• Payload: web site defacement
– HELLO! Welcome to http://www.worm.com!

Hacked By Chinese!
– Only done if language setting = English

Code Red of July 13, con’t

• 1st through 20th of each month: spread.
• 20th through end of each month: attack.

– Flooding attack against 198.137.240.91 …
– … i.e., www.whitehouse.gov

• Spread: via random scanning of 32-bit
IP address space.

• But: failure to seed random number generator
⇒ linear growth.

Code Red, con’t

• Revision released July 19, 2001.
• White House responds to threat of flooding

attack by changing the address of
www.whitehouse.gov

• Causes Code Red to die for date ≥ 20th of the
month.

• But: this time random number generator
correctly seeded. Bingo!

Measuring Internet-Scale Activity:
Network Telescopes

• Idea: monitor a cross-section of Internet
address space to measure network traffic
involving wide range of addresses
– “Backscatter” from DOS floods

– Attackers probing blindly

– Random scanning from worms

• LBNL’s cross-section: 1/32,768 of Internet
– Small enough for appreciable telescope lag

• UCSD, UWisc’s cross-section: 1/256.

Spread of Code Red

• Network telescopes estimate of # infected
hosts: 360K. (Beware DHCP & NAT)

• Course of infection fits classic logistic.
• Note: larger the vulnerable population, faster

the worm spreads.

• That night (⇒ 20th), worm dies …
 … except for hosts with inaccurate clocks!
• It just takes one of these to restart the worm

on August 1st …

Striving for Greater Virulence:
Code Red 2

• Released August 4, 2001.
• Comment in code: “Code Red 2.”

– But in fact completely different code base.

• Payload: a root backdoor, resilient to reboots.
• Bug: crashes NT, only works on Windows 2000.

• Localized scanning: prefers nearby
addresses.

• Kills Code Red 1.
• Safety valve: programmed to die Oct 1, 2001.

Striving for Greater Virulence:
Nimda

• Released September 18, 2001.
• Multi-mode spreading:

– attack IIS servers via infected clients
– email itself to address book as a virus
– copy itself across open network shares
– modifying Web pages on infected servers w/ client

exploit
– scanning for Code Red II backdoors (!)

⇒ worms form an ecosystem!
• Leaped across firewalls.

Code Red 2 kills
off Code Red 1

Code Red 2 settles
into weekly pattern

Nimda enters the
ecosystem

Code Red 2 dies off
as programmed

CR 1
returns
thanks
to bad
clocks

Code Red 2 dies off
as programmed

Nimda hums along,
slowly cleaned up

With its predator
gone, Code Red 1
comes back!, still
exhibiting monthly
pattern

Life Just Before Slammer

Life Just After Slammer

A Lesson in Economy

• Slammer exploited a connectionless UDP
service, rather than connection-oriented TCP.

• Entire worm fit in a single packet!
⇒ When scanning, worm could “fire and forget”.

• Worm infected 75,000+ hosts in 10 minutes
(despite broken random number generator).
– At its peak, doubled every 8.5 seconds

• Progress limited by the Internet’s carrying
capacity!

The Usual Logistic Growth

Slammer’s Bandwidth-Limited Growth

Blaster

• Released August 11, 2003.
• Exploits flaw in RPC service ubiquitous

across Windows.
• Payload: attack Microsoft Windows Update.
• Despite flawed scanning and secondary

infection strategy, rapidly propagates to
(at least) 100K’s of hosts.

• Actually, bulk of infections are really Nachia,
a Blaster counter-worm.

• Key paradigm shift: firewalls don’t help.

80% of Code Red 2
cleaned up due to
onset of Blaster

Code Red 2 re-
released with Oct.
2003 die-off

Code Red 1 and
Nimda endemic

Code Red 2 re-re-
released Jan 2004

Code Red 2
dies off
again

What if Spreading Were
Well-Designed?

• Observation (Weaver): Much of a worm’s
scanning is redundant.

• Idea: coordinated scanning
– Construct permutation of address space
– Each new worm starts at a random point
– Worm instance that “encounters” another instance

re-randomizes.

⇒ Greatly accelerates worm in later stages.

What if Spreading Were
Well-Designed?, con’t

• Observation (Weaver): Accelerate initial
phase using a precomputed hit-list of say 1%
vulnerable hosts.

⇒ At 100 scans/worm/sec, can infect huge
 population in a few minutes.

• Observation (Staniford): Compute hit-list of
entire vulnerable population, propagate via
divide & conquer.

⇒ With careful design, 106 hosts in < 2 sec!

Defenses

• Detect via honeyfarms: collections of
“honeypots” fed by a network telescope.
– Any outbound connection from honeyfarm = worm.

(at least, that’s the theory)

– Distill signature from inbound/outbound traffic.
– If telescope covers N addresses, expect detection

when worm has infected 1/N of population.
– Major issues regarding filtering

• Thwart via scan suppressors: network
elements that block traffic from hosts that
make failed connection attempts to too many
other hosts.

Defenses?

• Observation:
 worms don’t need to randomly scan

• Meta-server worm: ask server for hosts to
infect (e.g., Google for “powered by phpbb”)

• Topological worm: fuel the spread with local
information from infected hosts (web server
logs, email address books, config files, SSH
“known hosts”)

⇒ No scanning signature; with rich inter-
 connection topology, potentially very fast.

Defenses??

• Contagion worm: propagate parasitically
along with normally initiated communication.

• E.g., using 2 exploits - Web browser & Web
server - infect any vulnerable servers visited
by browser, then any vulnerable browsers
that come to those servers.

• E.g., using 1 BitTorrent exploit, glide along
immense peer-to-peer network in days/hours.

⇒ No unusual connection activity at all! :-(

Some Cheery Thoughts
(Stefan Savage, UCSD/CCIED)

• Imagine the following species:
– Poor genetic diversity; heavily inbred
– Lives in “hot zone”; thriving ecosystem of

infectious pathogens
– Instantaneous transmission of disease
– Immune response 10-1M times slower
– Poor hygiene practices

 What would its long-term prognosis be?
• What if diseases were designed …

– Trivial to create a new disease
– Highly profitable to do so

Broader View of Defenses

• Prevention -- make the monoculture hardier
– Get the darn code right in the first place …

• … or figure out what’s wrong with it and fix it

– Lots of active research (static & dynamic methods)
– Security reviews now taken seriously by industry

• E.g., ~$200M just to review Windows Server 2003

– But very expensive
– And very large Installed Base problem

• Prevention -- diversify the monoculture
– Via exploiting existing heterogeneity
– Via creating artificial heterogeneity

Broader View of Defenses, con’t

• Prevention -- keep vulnerabilities inaccessible
– Cisco’s Network Admission Control

• Frisk hosts that try to connect, block if vulnerable

– Microsoft’s Shield (“Band-Aid”)
• Shim-layer blocks network traffic that fits known

vulnerability (rather than known exploit)

• Detection -- look for unusual repeated content
– Can work on non-scanning worms
– Key off many-to-many communication to avoid

confusion w/ non-worm sources
– EarlyBird, Autograph -- distill signature
– But: what about polymorphic worms?

Once You Have A Live Worm,
Then What?

• Containment
– Use distilled signature to prevent further spread
– Different granularities possible:

• Infectees (doesn’t scale well)
• Content (or more abstract activity) description
• Vulnerable population

• Would like to leverage detections by others
– But how can you trust these?
– What if it’s an attacker lying to you to provoke a

self-damaging response? (Or to hide a later
actual attack)

Once You Have A Live Worm,
What Then?, con’t

• Proof of infection
– Idea: alerts come with a verifiable audit trail that

demonstrates the exploit, ala’ proof-carrying code

• Auto-patching
– Techniques to derive (and test!) patches to fix

vulnerabilities in real-time
(Excerpt from my review: “Not as crazy as it sounds”)

• Auto-antiworm
– Techniques to automatically derive a new worm

from a propagating one, but with disinfectant
payload

(This one, on the other hand, is as crazy as it sounds)

Incidental Damage … Today

• Today’s worms have significant real-world
impact:
– Code Red disrupted routing

– Slammer disrupted elections, ATMs, airline
schedules, operations at an off-line nuclear power
plant …

– Blaster possibly contributed to Great Blackout of
Aug. 2003 … ?

– Plus major clean-up costs

• But today’s worms are amateurish
– Unimaginative payloads

Where are the Nastier Worms??

• Botched propagation the norm

• Doesn’t anyone read the literature?

e.g. permutation scanning, flash worms,

 metaserver worms, topological, contagion

• Botched payloads the norm
e.g. Flooding-attack fizzles

⇒ Current worm authors are in it for kicks …

(… or testing) No arms race.

Next-Generation Worm Authors

• Military.

• Crooks:
– Denial-of-service, spamming for hire

– “Access worms”

– Very worrisome onset of blended threats

• Worms + viruses + spamming + phishing + DOS-for-hire

+ botnets + spyware

• Money on the table ⇒ Arms race
(market price for spam proxies: 3-10¢/host/week)

“Better” Payloads

• Wiping a disk costs $550/$2550*

• “A well-designed version of Blaster could
have infected 10M machines.” (8M+ for sure!)

• The same service exploited by Blaster has
other vulnerabilities …

• Potentially a lot more $$$: flashing BIOS,
corrupting databases, spreadsheets …

• Lower-bound estimate: $50B if well-designed

Attacks on Passive Monitoring

• Exploits for bugs in read-only analyzers!

• Suppose protocol analyzer has an error
parsing unusual type of packet
– E.g., tcpdump and malformed options

• Adversary crafts such a packet, overruns
buffer, causes analyzer to execute arbitrary
code

Witty

• Released March 19, 2004.

• Single UDP packet exploits flaw in the
passive analysis of Internet Security Systems
products.

• “Bandwidth-limited” UDP worm ala’ Slammer.

• Vulnerable pop. (12K) attained in 75 minutes.

• Payload: slowly corrupt random disk blocks.

Witty, con’t

• Flaw had been announced the previous day.

• Telescope analysis reveals:
– Initial spread seeded via a hit-list.
– In fact, targeted a U.S. military base.
– Analysis also reveals “Patient Zero”, a European

retail ISP.

• Written by a Pro.

How Will Defenses Evolve?

• Wide-area automated coordination/decision-

making/trust very hard

• More sophisticated spreading paradigms will

require:

– Rich application analysis

coupled with

– Well-developed anomaly detection

What do we need?

• Hardening of end hosts

• Traces of both worms and esp. background

• Topologies reflecting application-interconn.

• Funding that isn’t classified

• Good, basic thinking:

– This area is still young and there is a lot of

low-hanging fruit / clever insight awaiting …

But At Least Us Researchers are
Having Fun …

• Very challenging research problems
– Immense scale
– Coordination across disparate parties
– Application anomaly detection
– Automated response

• Whole new sub-area
– What seems hopeless today …

… can suddenly yield prospects tomorrow.
– And vice versa: tomorrow can be much more

bleak than today!

